LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zherk()

subroutine zherk ( character uplo,
character trans,
integer n,
integer k,
double precision alpha,
complex*16, dimension(lda,*) a,
integer lda,
double precision beta,
complex*16, dimension(ldc,*) c,
integer ldc )

ZHERK

Purpose:
!> !> ZHERK performs one of the hermitian rank k operations !> !> C := alpha*A*A**H + beta*C, !> !> or !> !> C := alpha*A**H*A + beta*C, !> !> where alpha and beta are real scalars, C is an n by n hermitian !> matrix and A is an n by k matrix in the first case and a k by n !> matrix in the second case. !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the array C is to be referenced as !> follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of C !> is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of C !> is to be referenced. !>
[in]TRANS
!> TRANS is CHARACTER*1 !> On entry, TRANS specifies the operation to be performed as !> follows: !> !> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C. !> !> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C. !>
[in]N
!> N is INTEGER !> On entry, N specifies the order of the matrix C. N must be !> at least zero. !>
[in]K
!> K is INTEGER !> On entry with TRANS = 'N' or 'n', K specifies the number !> of columns of the matrix A, and on entry with !> TRANS = 'C' or 'c', K specifies the number of rows of the !> matrix A. K must be at least zero. !>
[in]ALPHA
!> ALPHA is DOUBLE PRECISION . !> On entry, ALPHA specifies the scalar alpha. !>
[in]A
!> A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is !> k when TRANS = 'N' or 'n', and is n otherwise. !> Before entry with TRANS = 'N' or 'n', the leading n by k !> part of the array A must contain the matrix A, otherwise !> the leading k by n part of the array A must contain the !> matrix A. !>
[in]LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. When TRANS = 'N' or 'n' !> then LDA must be at least max( 1, n ), otherwise LDA must !> be at least max( 1, k ). !>
[in]BETA
!> BETA is DOUBLE PRECISION. !> On entry, BETA specifies the scalar beta. !>
[in,out]C
!> C is COMPLEX*16 array, dimension ( LDC, N ) !> Before entry with UPLO = 'U' or 'u', the leading n by n !> upper triangular part of the array C must contain the upper !> triangular part of the hermitian matrix and the strictly !> lower triangular part of C is not referenced. On exit, the !> upper triangular part of the array C is overwritten by the !> upper triangular part of the updated matrix. !> Before entry with UPLO = 'L' or 'l', the leading n by n !> lower triangular part of the array C must contain the lower !> triangular part of the hermitian matrix and the strictly !> upper triangular part of C is not referenced. On exit, the !> lower triangular part of the array C is overwritten by the !> lower triangular part of the updated matrix. !> Note that the imaginary parts of the diagonal elements need !> not be set, they are assumed to be zero, and on exit they !> are set to zero. !>
[in]LDC
!> LDC is INTEGER !> On entry, LDC specifies the first dimension of C as declared !> in the calling (sub) program. LDC must be at least !> max( 1, n ). !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 3 Blas routine. !> !> -- Written on 8-February-1989. !> Jack Dongarra, Argonne National Laboratory. !> Iain Duff, AERE Harwell. !> Jeremy Du Croz, Numerical Algorithms Group Ltd. !> Sven Hammarling, Numerical Algorithms Group Ltd. !> !> -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. !> Ed Anderson, Cray Research Inc. !>

Definition at line 172 of file zherk.f.

173*
174* -- Reference BLAS level3 routine --
175* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
176* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177*
178* .. Scalar Arguments ..
179 DOUBLE PRECISION ALPHA,BETA
180 INTEGER K,LDA,LDC,N
181 CHARACTER TRANS,UPLO
182* ..
183* .. Array Arguments ..
184 COMPLEX*16 A(LDA,*),C(LDC,*)
185* ..
186*
187* =====================================================================
188*
189* .. External Functions ..
190 LOGICAL LSAME
191 EXTERNAL lsame
192* ..
193* .. External Subroutines ..
194 EXTERNAL xerbla
195* ..
196* .. Intrinsic Functions ..
197 INTRINSIC dble,dcmplx,dconjg,max
198* ..
199* .. Local Scalars ..
200 COMPLEX*16 TEMP
201 DOUBLE PRECISION RTEMP
202 INTEGER I,INFO,J,L,NROWA
203 LOGICAL UPPER
204* ..
205* .. Parameters ..
206 DOUBLE PRECISION ONE,ZERO
207 parameter(one=1.0d+0,zero=0.0d+0)
208* ..
209*
210* Test the input parameters.
211*
212 IF (lsame(trans,'N')) THEN
213 nrowa = n
214 ELSE
215 nrowa = k
216 END IF
217 upper = lsame(uplo,'U')
218*
219 info = 0
220 IF ((.NOT.upper) .AND. (.NOT.lsame(uplo,'L'))) THEN
221 info = 1
222 ELSE IF ((.NOT.lsame(trans,'N')) .AND.
223 + (.NOT.lsame(trans,'C'))) THEN
224 info = 2
225 ELSE IF (n.LT.0) THEN
226 info = 3
227 ELSE IF (k.LT.0) THEN
228 info = 4
229 ELSE IF (lda.LT.max(1,nrowa)) THEN
230 info = 7
231 ELSE IF (ldc.LT.max(1,n)) THEN
232 info = 10
233 END IF
234 IF (info.NE.0) THEN
235 CALL xerbla('ZHERK ',info)
236 RETURN
237 END IF
238*
239* Quick return if possible.
240*
241 IF ((n.EQ.0) .OR. (((alpha.EQ.zero).OR.
242 + (k.EQ.0)).AND. (beta.EQ.one))) RETURN
243*
244* And when alpha.eq.zero.
245*
246 IF (alpha.EQ.zero) THEN
247 IF (upper) THEN
248 IF (beta.EQ.zero) THEN
249 DO 20 j = 1,n
250 DO 10 i = 1,j
251 c(i,j) = zero
252 10 CONTINUE
253 20 CONTINUE
254 ELSE
255 DO 40 j = 1,n
256 DO 30 i = 1,j - 1
257 c(i,j) = beta*c(i,j)
258 30 CONTINUE
259 c(j,j) = beta*dble(c(j,j))
260 40 CONTINUE
261 END IF
262 ELSE
263 IF (beta.EQ.zero) THEN
264 DO 60 j = 1,n
265 DO 50 i = j,n
266 c(i,j) = zero
267 50 CONTINUE
268 60 CONTINUE
269 ELSE
270 DO 80 j = 1,n
271 c(j,j) = beta*dble(c(j,j))
272 DO 70 i = j + 1,n
273 c(i,j) = beta*c(i,j)
274 70 CONTINUE
275 80 CONTINUE
276 END IF
277 END IF
278 RETURN
279 END IF
280*
281* Start the operations.
282*
283 IF (lsame(trans,'N')) THEN
284*
285* Form C := alpha*A*A**H + beta*C.
286*
287 IF (upper) THEN
288 DO 130 j = 1,n
289 IF (beta.EQ.zero) THEN
290 DO 90 i = 1,j
291 c(i,j) = zero
292 90 CONTINUE
293 ELSE IF (beta.NE.one) THEN
294 DO 100 i = 1,j - 1
295 c(i,j) = beta*c(i,j)
296 100 CONTINUE
297 c(j,j) = beta*dble(c(j,j))
298 ELSE
299 c(j,j) = dble(c(j,j))
300 END IF
301 DO 120 l = 1,k
302 IF (a(j,l).NE.dcmplx(zero)) THEN
303 temp = alpha*dconjg(a(j,l))
304 DO 110 i = 1,j - 1
305 c(i,j) = c(i,j) + temp*a(i,l)
306 110 CONTINUE
307 c(j,j) = dble(c(j,j)) + dble(temp*a(i,l))
308 END IF
309 120 CONTINUE
310 130 CONTINUE
311 ELSE
312 DO 180 j = 1,n
313 IF (beta.EQ.zero) THEN
314 DO 140 i = j,n
315 c(i,j) = zero
316 140 CONTINUE
317 ELSE IF (beta.NE.one) THEN
318 c(j,j) = beta*dble(c(j,j))
319 DO 150 i = j + 1,n
320 c(i,j) = beta*c(i,j)
321 150 CONTINUE
322 ELSE
323 c(j,j) = dble(c(j,j))
324 END IF
325 DO 170 l = 1,k
326 IF (a(j,l).NE.dcmplx(zero)) THEN
327 temp = alpha*dconjg(a(j,l))
328 c(j,j) = dble(c(j,j)) + dble(temp*a(j,l))
329 DO 160 i = j + 1,n
330 c(i,j) = c(i,j) + temp*a(i,l)
331 160 CONTINUE
332 END IF
333 170 CONTINUE
334 180 CONTINUE
335 END IF
336 ELSE
337*
338* Form C := alpha*A**H*A + beta*C.
339*
340 IF (upper) THEN
341 DO 220 j = 1,n
342 DO 200 i = 1,j - 1
343 temp = zero
344 DO 190 l = 1,k
345 temp = temp + dconjg(a(l,i))*a(l,j)
346 190 CONTINUE
347 IF (beta.EQ.zero) THEN
348 c(i,j) = alpha*temp
349 ELSE
350 c(i,j) = alpha*temp + beta*c(i,j)
351 END IF
352 200 CONTINUE
353 rtemp = zero
354 DO 210 l = 1,k
355 rtemp = rtemp + dble(dconjg(a(l,j))*a(l,j))
356 210 CONTINUE
357 IF (beta.EQ.zero) THEN
358 c(j,j) = alpha*rtemp
359 ELSE
360 c(j,j) = alpha*rtemp + beta*dble(c(j,j))
361 END IF
362 220 CONTINUE
363 ELSE
364 DO 260 j = 1,n
365 rtemp = zero
366 DO 230 l = 1,k
367 rtemp = rtemp + dble(dconjg(a(l,j))*a(l,j))
368 230 CONTINUE
369 IF (beta.EQ.zero) THEN
370 c(j,j) = alpha*rtemp
371 ELSE
372 c(j,j) = alpha*rtemp + beta*dble(c(j,j))
373 END IF
374 DO 250 i = j + 1,n
375 temp = zero
376 DO 240 l = 1,k
377 temp = temp + dconjg(a(l,i))*a(l,j)
378 240 CONTINUE
379 IF (beta.EQ.zero) THEN
380 c(i,j) = alpha*temp
381 ELSE
382 c(i,j) = alpha*temp + beta*c(i,j)
383 END IF
384 250 CONTINUE
385 260 CONTINUE
386 END IF
387 END IF
388*
389 RETURN
390*
391* End of ZHERK
392*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: