LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ ztpqrt()

subroutine ztpqrt ( integer m,
integer n,
integer l,
integer nb,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldt, * ) t,
integer ldt,
complex*16, dimension( * ) work,
integer info )

ZTPQRT

Download ZTPQRT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZTPQRT computes a blocked QR factorization of a complex !> matrix C, which is composed of a !> triangular block A and pentagonal block B, using the compact !> WY representation for Q. !>
Parameters
[in]M
!> M is INTEGER !> The number of rows of the matrix B. !> M >= 0. !>
[in]N
!> N is INTEGER !> The number of columns of the matrix B, and the order of the !> triangular matrix A. !> N >= 0. !>
[in]L
!> L is INTEGER !> The number of rows of the upper trapezoidal part of B. !> MIN(M,N) >= L >= 0. See Further Details. !>
[in]NB
!> NB is INTEGER !> The block size to be used in the blocked QR. N >= NB >= 1. !>
[in,out]A
!> A is COMPLEX*16 array, dimension (LDA,N) !> On entry, the upper triangular N-by-N matrix A. !> On exit, the elements on and above the diagonal of the array !> contain the upper triangular matrix R. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
[in,out]B
!> B is COMPLEX*16 array, dimension (LDB,N) !> On entry, the pentagonal M-by-N matrix B. The first M-L rows !> are rectangular, and the last L rows are upper trapezoidal. !> On exit, B contains the pentagonal matrix V. See Further Details. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,M). !>
[out]T
!> T is COMPLEX*16 array, dimension (LDT,N) !> The upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. See Further Details. !>
[in]LDT
!> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension (NB*N) !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The input matrix C is a (N+M)-by-N matrix !> !> C = [ A ] !> [ B ] !> !> where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal !> matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N !> upper trapezoidal matrix B2: !> !> B = [ B1 ] <- (M-L)-by-N rectangular !> [ B2 ] <- L-by-N upper trapezoidal. !> !> The upper trapezoidal matrix B2 consists of the first L rows of a !> N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N). If L=0, !> B is rectangular M-by-N; if M=L=N, B is upper triangular. !> !> The matrix W stores the elementary reflectors H(i) in the i-th column !> below the diagonal (of A) in the (N+M)-by-N input matrix C !> !> C = [ A ] <- upper triangular N-by-N !> [ B ] <- M-by-N pentagonal !> !> so that W can be represented as !> !> W = [ I ] <- identity, N-by-N !> [ V ] <- M-by-N, same form as B. !> !> Thus, all of information needed for W is contained on exit in B, which !> we call V above. Note that V has the same form as B; that is, !> !> V = [ V1 ] <- (M-L)-by-N rectangular !> [ V2 ] <- L-by-N upper trapezoidal. !> !> The columns of V represent the vectors which define the H(i)'s. !> !> The number of blocks is B = ceiling(N/NB), where each !> block is of order NB except for the last block, which is of order !> IB = N - (B-1)*NB. For each of the B blocks, a upper triangular block !> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB !> for the last block) T's are stored in the NB-by-N matrix T as !> !> T = [T1 T2 ... TB]. !>

Definition at line 185 of file ztpqrt.f.

187*
188* -- LAPACK computational routine --
189* -- LAPACK is a software package provided by Univ. of Tennessee, --
190* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
191*
192* .. Scalar Arguments ..
193 INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
194* ..
195* .. Array Arguments ..
196 COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
197* ..
198*
199* =====================================================================
200*
201* ..
202* .. Local Scalars ..
203 INTEGER I, IB, LB, MB, IINFO
204* ..
205* .. External Subroutines ..
206 EXTERNAL ztpqrt2, ztprfb, xerbla
207* ..
208* .. Executable Statements ..
209*
210* Test the input arguments
211*
212 info = 0
213 IF( m.LT.0 ) THEN
214 info = -1
215 ELSE IF( n.LT.0 ) THEN
216 info = -2
217 ELSE IF( l.LT.0 .OR. (l.GT.min(m,n) .AND. min(m,n).GE.0)) THEN
218 info = -3
219 ELSE IF( nb.LT.1 .OR. (nb.GT.n .AND. n.GT.0)) THEN
220 info = -4
221 ELSE IF( lda.LT.max( 1, n ) ) THEN
222 info = -6
223 ELSE IF( ldb.LT.max( 1, m ) ) THEN
224 info = -8
225 ELSE IF( ldt.LT.nb ) THEN
226 info = -10
227 END IF
228 IF( info.NE.0 ) THEN
229 CALL xerbla( 'ZTPQRT', -info )
230 RETURN
231 END IF
232*
233* Quick return if possible
234*
235 IF( m.EQ.0 .OR. n.EQ.0 ) RETURN
236*
237 DO i = 1, n, nb
238*
239* Compute the QR factorization of the current block
240*
241 ib = min( n-i+1, nb )
242 mb = min( m-l+i+ib-1, m )
243 IF( i.GE.l ) THEN
244 lb = 0
245 ELSE
246 lb = mb-m+l-i+1
247 END IF
248*
249 CALL ztpqrt2( mb, ib, lb, a(i,i), lda, b( 1, i ), ldb,
250 $ t(1, i ), ldt, iinfo )
251*
252* Update by applying H**H to B(:,I+IB:N) from the left
253*
254 IF( i+ib.LE.n ) THEN
255 CALL ztprfb( 'L', 'C', 'F', 'C', mb, n-i-ib+1, ib, lb,
256 $ b( 1, i ), ldb, t( 1, i ), ldt,
257 $ a( i, i+ib ), lda, b( 1, i+ib ), ldb,
258 $ work, ib )
259 END IF
260 END DO
261 RETURN
262*
263* End of ZTPQRT
264*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ztpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
ZTPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix,...
Definition ztpqrt2.f:171
subroutine ztprfb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
ZTPRFB applies a complex "triangular-pentagonal" block reflector to a complex matrix,...
Definition ztprfb.f:249
Here is the call graph for this function:
Here is the caller graph for this function: