LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dchksy_rook()

subroutine dchksy_rook ( logical, dimension( * )  dotype,
integer  nn,
integer, dimension( * )  nval,
integer  nnb,
integer, dimension( * )  nbval,
integer  nns,
integer, dimension( * )  nsval,
double precision  thresh,
logical  tsterr,
integer  nmax,
double precision, dimension( * )  a,
double precision, dimension( * )  afac,
double precision, dimension( * )  ainv,
double precision, dimension( * )  b,
double precision, dimension( * )  x,
double precision, dimension( * )  xact,
double precision, dimension( * )  work,
double precision, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  nout 
)

DCHKSY_ROOK

Purpose:
 DCHKSY_ROOK tests DSYTRF_ROOK, -TRI_ROOK, -TRS_ROOK,
 and -CON_ROOK.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]AINV
          AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
[out]B
          B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 168 of file dchksy_rook.f.

171*
172* -- LAPACK test routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 LOGICAL TSTERR
178 INTEGER NMAX, NN, NNB, NNS, NOUT
179 DOUBLE PRECISION THRESH
180* ..
181* .. Array Arguments ..
182 LOGICAL DOTYPE( * )
183 INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
184 DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
185 $ RWORK( * ), WORK( * ), X( * ), XACT( * )
186* ..
187*
188* =====================================================================
189*
190* .. Parameters ..
191 DOUBLE PRECISION ZERO, ONE
192 parameter( zero = 0.0d+0, one = 1.0d+0 )
193 DOUBLE PRECISION EIGHT, SEVTEN
194 parameter( eight = 8.0d+0, sevten = 17.0d+0 )
195 INTEGER NTYPES
196 parameter( ntypes = 10 )
197 INTEGER NTESTS
198 parameter( ntests = 7 )
199* ..
200* .. Local Scalars ..
201 LOGICAL TRFCON, ZEROT
202 CHARACTER DIST, TYPE, UPLO, XTYPE
203 CHARACTER*3 PATH, MATPATH
204 INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
205 $ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
206 $ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
207 DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, DTEMP, SING_MAX,
208 $ SING_MIN, RCOND, RCONDC
209* ..
210* .. Local Arrays ..
211 CHARACTER UPLOS( 2 )
212 INTEGER ISEED( 4 ), ISEEDY( 4 )
213 DOUBLE PRECISION BLOCK( 2, 2 ), DDUMMY( 1 ), RESULT( NTESTS )
214* ..
215* .. External Functions ..
216 DOUBLE PRECISION DGET06, DLANGE, DLANSY
217 EXTERNAL dget06, dlange, dlansy
218* ..
219* .. External Subroutines ..
220 EXTERNAL alaerh, alahd, alasum, derrsy, dget04, dlacpy,
224* ..
225* .. Intrinsic Functions ..
226 INTRINSIC max, min, sqrt
227* ..
228* .. Scalars in Common ..
229 LOGICAL LERR, OK
230 CHARACTER*32 SRNAMT
231 INTEGER INFOT, NUNIT
232* ..
233* .. Common blocks ..
234 COMMON / infoc / infot, nunit, ok, lerr
235 COMMON / srnamc / srnamt
236* ..
237* .. Data statements ..
238 DATA iseedy / 1988, 1989, 1990, 1991 /
239 DATA uplos / 'U', 'L' /
240* ..
241* .. Executable Statements ..
242*
243* Initialize constants and the random number seed.
244*
245 alpha = ( one+sqrt( sevten ) ) / eight
246*
247* Test path
248*
249 path( 1: 1 ) = 'Double precision'
250 path( 2: 3 ) = 'SR'
251*
252* Path to generate matrices
253*
254 matpath( 1: 1 ) = 'Double precision'
255 matpath( 2: 3 ) = 'SY'
256*
257 nrun = 0
258 nfail = 0
259 nerrs = 0
260 DO 10 i = 1, 4
261 iseed( i ) = iseedy( i )
262 10 CONTINUE
263*
264* Test the error exits
265*
266 IF( tsterr )
267 $ CALL derrsy( path, nout )
268 infot = 0
269*
270* Set the minimum block size for which the block routine should
271* be used, which will be later returned by ILAENV
272*
273 CALL xlaenv( 2, 2 )
274*
275* Do for each value of N in NVAL
276*
277 DO 270 in = 1, nn
278 n = nval( in )
279 lda = max( n, 1 )
280 xtype = 'N'
281 nimat = ntypes
282 IF( n.LE.0 )
283 $ nimat = 1
284*
285 izero = 0
286*
287* Do for each value of matrix type IMAT
288*
289 DO 260 imat = 1, nimat
290*
291* Do the tests only if DOTYPE( IMAT ) is true.
292*
293 IF( .NOT.dotype( imat ) )
294 $ GO TO 260
295*
296* Skip types 3, 4, 5, or 6 if the matrix size is too small.
297*
298 zerot = imat.GE.3 .AND. imat.LE.6
299 IF( zerot .AND. n.LT.imat-2 )
300 $ GO TO 260
301*
302* Do first for UPLO = 'U', then for UPLO = 'L'
303*
304 DO 250 iuplo = 1, 2
305 uplo = uplos( iuplo )
306*
307* Begin generate the test matrix A.
308*
309* Set up parameters with DLATB4 for the matrix generator
310* based on the type of matrix to be generated.
311*
312 CALL dlatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
313 $ MODE, CNDNUM, DIST )
314*
315* Generate a matrix with DLATMS.
316*
317 srnamt = 'DLATMS'
318 CALL dlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
319 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
320 $ INFO )
321*
322* Check error code from DLATMS and handle error.
323*
324 IF( info.NE.0 ) THEN
325 CALL alaerh( path, 'DLATMS', info, 0, uplo, n, n, -1,
326 $ -1, -1, imat, nfail, nerrs, nout )
327*
328* Skip all tests for this generated matrix
329*
330 GO TO 250
331 END IF
332*
333* For matrix types 3-6, zero one or more rows and
334* columns of the matrix to test that INFO is returned
335* correctly.
336*
337 IF( zerot ) THEN
338 IF( imat.EQ.3 ) THEN
339 izero = 1
340 ELSE IF( imat.EQ.4 ) THEN
341 izero = n
342 ELSE
343 izero = n / 2 + 1
344 END IF
345*
346 IF( imat.LT.6 ) THEN
347*
348* Set row and column IZERO to zero.
349*
350 IF( iuplo.EQ.1 ) THEN
351 ioff = ( izero-1 )*lda
352 DO 20 i = 1, izero - 1
353 a( ioff+i ) = zero
354 20 CONTINUE
355 ioff = ioff + izero
356 DO 30 i = izero, n
357 a( ioff ) = zero
358 ioff = ioff + lda
359 30 CONTINUE
360 ELSE
361 ioff = izero
362 DO 40 i = 1, izero - 1
363 a( ioff ) = zero
364 ioff = ioff + lda
365 40 CONTINUE
366 ioff = ioff - izero
367 DO 50 i = izero, n
368 a( ioff+i ) = zero
369 50 CONTINUE
370 END IF
371 ELSE
372 IF( iuplo.EQ.1 ) THEN
373*
374* Set the first IZERO rows and columns to zero.
375*
376 ioff = 0
377 DO 70 j = 1, n
378 i2 = min( j, izero )
379 DO 60 i = 1, i2
380 a( ioff+i ) = zero
381 60 CONTINUE
382 ioff = ioff + lda
383 70 CONTINUE
384 ELSE
385*
386* Set the last IZERO rows and columns to zero.
387*
388 ioff = 0
389 DO 90 j = 1, n
390 i1 = max( j, izero )
391 DO 80 i = i1, n
392 a( ioff+i ) = zero
393 80 CONTINUE
394 ioff = ioff + lda
395 90 CONTINUE
396 END IF
397 END IF
398 ELSE
399 izero = 0
400 END IF
401*
402* End generate the test matrix A.
403*
404*
405* Do for each value of NB in NBVAL
406*
407 DO 240 inb = 1, nnb
408*
409* Set the optimal blocksize, which will be later
410* returned by ILAENV.
411*
412 nb = nbval( inb )
413 CALL xlaenv( 1, nb )
414*
415* Copy the test matrix A into matrix AFAC which
416* will be factorized in place. This is needed to
417* preserve the test matrix A for subsequent tests.
418*
419 CALL dlacpy( uplo, n, n, a, lda, afac, lda )
420*
421* Compute the L*D*L**T or U*D*U**T factorization of the
422* matrix. IWORK stores details of the interchanges and
423* the block structure of D. AINV is a work array for
424* block factorization, LWORK is the length of AINV.
425*
426 lwork = max( 2, nb )*lda
427 srnamt = 'DSYTRF_ROOK'
428 CALL dsytrf_rook( uplo, n, afac, lda, iwork, ainv,
429 $ lwork, info )
430*
431* Adjust the expected value of INFO to account for
432* pivoting.
433*
434 k = izero
435 IF( k.GT.0 ) THEN
436 100 CONTINUE
437 IF( iwork( k ).LT.0 ) THEN
438 IF( iwork( k ).NE.-k ) THEN
439 k = -iwork( k )
440 GO TO 100
441 END IF
442 ELSE IF( iwork( k ).NE.k ) THEN
443 k = iwork( k )
444 GO TO 100
445 END IF
446 END IF
447*
448* Check error code from DSYTRF_ROOK and handle error.
449*
450 IF( info.NE.k)
451 $ CALL alaerh( path, 'DSYTRF_ROOK', info, k,
452 $ uplo, n, n, -1, -1, nb, imat,
453 $ nfail, nerrs, nout )
454*
455* Set the condition estimate flag if the INFO is not 0.
456*
457 IF( info.NE.0 ) THEN
458 trfcon = .true.
459 ELSE
460 trfcon = .false.
461 END IF
462*
463*+ TEST 1
464* Reconstruct matrix from factors and compute residual.
465*
466 CALL dsyt01_rook( uplo, n, a, lda, afac, lda, iwork,
467 $ ainv, lda, rwork, result( 1 ) )
468 nt = 1
469*
470*+ TEST 2
471* Form the inverse and compute the residual,
472* if the factorization was competed without INFO > 0
473* (i.e. there is no zero rows and columns).
474* Do it only for the first block size.
475*
476 IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
477 CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
478 srnamt = 'DSYTRI_ROOK'
479 CALL dsytri_rook( uplo, n, ainv, lda, iwork, work,
480 $ info )
481*
482* Check error code from DSYTRI_ROOK and handle error.
483*
484 IF( info.NE.0 )
485 $ CALL alaerh( path, 'DSYTRI_ROOK', info, -1,
486 $ uplo, n, n, -1, -1, -1, imat,
487 $ nfail, nerrs, nout )
488*
489* Compute the residual for a symmetric matrix times
490* its inverse.
491*
492 CALL dpot03( uplo, n, a, lda, ainv, lda, work, lda,
493 $ rwork, rcondc, result( 2 ) )
494 nt = 2
495 END IF
496*
497* Print information about the tests that did not pass
498* the threshold.
499*
500 DO 110 k = 1, nt
501 IF( result( k ).GE.thresh ) THEN
502 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
503 $ CALL alahd( nout, path )
504 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
505 $ result( k )
506 nfail = nfail + 1
507 END IF
508 110 CONTINUE
509 nrun = nrun + nt
510*
511*+ TEST 3
512* Compute largest element in U or L
513*
514 result( 3 ) = zero
515 dtemp = zero
516*
517 const = one / ( one-alpha )
518*
519 IF( iuplo.EQ.1 ) THEN
520*
521* Compute largest element in U
522*
523 k = n
524 120 CONTINUE
525 IF( k.LE.1 )
526 $ GO TO 130
527*
528 IF( iwork( k ).GT.zero ) THEN
529*
530* Get max absolute value from elements
531* in column k in in U
532*
533 dtemp = dlange( 'M', k-1, 1,
534 $ afac( ( k-1 )*lda+1 ), lda, rwork )
535 ELSE
536*
537* Get max absolute value from elements
538* in columns k and k-1 in U
539*
540 dtemp = dlange( 'M', k-2, 2,
541 $ afac( ( k-2 )*lda+1 ), lda, rwork )
542 k = k - 1
543*
544 END IF
545*
546* DTEMP should be bounded by CONST
547*
548 dtemp = dtemp - const + thresh
549 IF( dtemp.GT.result( 3 ) )
550 $ result( 3 ) = dtemp
551*
552 k = k - 1
553*
554 GO TO 120
555 130 CONTINUE
556*
557 ELSE
558*
559* Compute largest element in L
560*
561 k = 1
562 140 CONTINUE
563 IF( k.GE.n )
564 $ GO TO 150
565*
566 IF( iwork( k ).GT.zero ) THEN
567*
568* Get max absolute value from elements
569* in column k in in L
570*
571 dtemp = dlange( 'M', n-k, 1,
572 $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
573 ELSE
574*
575* Get max absolute value from elements
576* in columns k and k+1 in L
577*
578 dtemp = dlange( 'M', n-k-1, 2,
579 $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
580 k = k + 1
581*
582 END IF
583*
584* DTEMP should be bounded by CONST
585*
586 dtemp = dtemp - const + thresh
587 IF( dtemp.GT.result( 3 ) )
588 $ result( 3 ) = dtemp
589*
590 k = k + 1
591*
592 GO TO 140
593 150 CONTINUE
594 END IF
595*
596*
597*+ TEST 4
598* Compute largest 2-Norm (condition number)
599* of 2-by-2 diag blocks
600*
601 result( 4 ) = zero
602 dtemp = zero
603*
604 const = ( one+alpha ) / ( one-alpha )
605 CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
606*
607 IF( iuplo.EQ.1 ) THEN
608*
609* Loop backward for UPLO = 'U'
610*
611 k = n
612 160 CONTINUE
613 IF( k.LE.1 )
614 $ GO TO 170
615*
616 IF( iwork( k ).LT.zero ) THEN
617*
618* Get the two singular values
619* (real and non-negative) of a 2-by-2 block,
620* store them in RWORK array
621*
622 block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
623 block( 1, 2 ) = afac( (k-1)*lda+k-1 )
624 block( 2, 1 ) = block( 1, 2 )
625 block( 2, 2 ) = afac( (k-1)*lda+k )
626*
627 CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
628 $ ddummy, 1, ddummy, 1,
629 $ work, 10, info )
630*
631 sing_max = rwork( 1 )
632 sing_min = rwork( 2 )
633*
634 dtemp = sing_max / sing_min
635*
636* DTEMP should be bounded by CONST
637*
638 dtemp = dtemp - const + thresh
639 IF( dtemp.GT.result( 4 ) )
640 $ result( 4 ) = dtemp
641 k = k - 1
642*
643 END IF
644*
645 k = k - 1
646*
647 GO TO 160
648 170 CONTINUE
649*
650 ELSE
651*
652* Loop forward for UPLO = 'L'
653*
654 k = 1
655 180 CONTINUE
656 IF( k.GE.n )
657 $ GO TO 190
658*
659 IF( iwork( k ).LT.zero ) THEN
660*
661* Get the two singular values
662* (real and non-negative) of a 2-by-2 block,
663* store them in RWORK array
664*
665 block( 1, 1 ) = afac( ( k-1 )*lda+k )
666 block( 2, 1 ) = afac( ( k-1 )*lda+k+1 )
667 block( 1, 2 ) = block( 2, 1 )
668 block( 2, 2 ) = afac( k*lda+k+1 )
669*
670 CALL dgesvd( 'N', 'N', 2, 2, block, 2, rwork,
671 $ ddummy, 1, ddummy, 1,
672 $ work, 10, info )
673*
674*
675 sing_max = rwork( 1 )
676 sing_min = rwork( 2 )
677*
678 dtemp = sing_max / sing_min
679*
680* DTEMP should be bounded by CONST
681*
682 dtemp = dtemp - const + thresh
683 IF( dtemp.GT.result( 4 ) )
684 $ result( 4 ) = dtemp
685 k = k + 1
686*
687 END IF
688*
689 k = k + 1
690*
691 GO TO 180
692 190 CONTINUE
693 END IF
694*
695* Print information about the tests that did not pass
696* the threshold.
697*
698 DO 200 k = 3, 4
699 IF( result( k ).GE.thresh ) THEN
700 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
701 $ CALL alahd( nout, path )
702 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
703 $ result( k )
704 nfail = nfail + 1
705 END IF
706 200 CONTINUE
707 nrun = nrun + 2
708*
709* Skip the other tests if this is not the first block
710* size.
711*
712 IF( inb.GT.1 )
713 $ GO TO 240
714*
715* Do only the condition estimate if INFO is not 0.
716*
717 IF( trfcon ) THEN
718 rcondc = zero
719 GO TO 230
720 END IF
721*
722* Do for each value of NRHS in NSVAL.
723*
724 DO 220 irhs = 1, nns
725 nrhs = nsval( irhs )
726*
727*+ TEST 5 ( Using TRS_ROOK)
728* Solve and compute residual for A * X = B.
729*
730* Choose a set of NRHS random solution vectors
731* stored in XACT and set up the right hand side B
732*
733 srnamt = 'DLARHS'
734 CALL dlarhs( matpath, xtype, uplo, ' ', n, n,
735 $ kl, ku, nrhs, a, lda, xact, lda,
736 $ b, lda, iseed, info )
737 CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
738*
739 srnamt = 'DSYTRS_ROOK'
740 CALL dsytrs_rook( uplo, n, nrhs, afac, lda, iwork,
741 $ x, lda, info )
742*
743* Check error code from DSYTRS_ROOK and handle error.
744*
745 IF( info.NE.0 )
746 $ CALL alaerh( path, 'DSYTRS_ROOK', info, 0,
747 $ uplo, n, n, -1, -1, nrhs, imat,
748 $ nfail, nerrs, nout )
749*
750 CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
751*
752* Compute the residual for the solution
753*
754 CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
755 $ lda, rwork, result( 5 ) )
756*
757*+ TEST 6
758* Check solution from generated exact solution.
759*
760 CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
761 $ result( 6 ) )
762*
763* Print information about the tests that did not pass
764* the threshold.
765*
766 DO 210 k = 5, 6
767 IF( result( k ).GE.thresh ) THEN
768 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
769 $ CALL alahd( nout, path )
770 WRITE( nout, fmt = 9998 )uplo, n, nrhs,
771 $ imat, k, result( k )
772 nfail = nfail + 1
773 END IF
774 210 CONTINUE
775 nrun = nrun + 2
776*
777* End do for each value of NRHS in NSVAL.
778*
779 220 CONTINUE
780*
781*+ TEST 7
782* Get an estimate of RCOND = 1/CNDNUM.
783*
784 230 CONTINUE
785 anorm = dlansy( '1', uplo, n, a, lda, rwork )
786 srnamt = 'DSYCON_ROOK'
787 CALL dsycon_rook( uplo, n, afac, lda, iwork, anorm,
788 $ rcond, work, iwork( n+1 ), info )
789*
790* Check error code from DSYCON_ROOK and handle error.
791*
792 IF( info.NE.0 )
793 $ CALL alaerh( path, 'DSYCON_ROOK', info, 0,
794 $ uplo, n, n, -1, -1, -1, imat,
795 $ nfail, nerrs, nout )
796*
797* Compute the test ratio to compare to values of RCOND
798*
799 result( 7 ) = dget06( rcond, rcondc )
800*
801* Print information about the tests that did not pass
802* the threshold.
803*
804 IF( result( 7 ).GE.thresh ) THEN
805 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
806 $ CALL alahd( nout, path )
807 WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
808 $ result( 7 )
809 nfail = nfail + 1
810 END IF
811 nrun = nrun + 1
812 240 CONTINUE
813*
814 250 CONTINUE
815 260 CONTINUE
816 270 CONTINUE
817*
818* Print a summary of the results.
819*
820 CALL alasum( path, nout, nfail, nrun, nerrs )
821*
822 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
823 $ i2, ', test ', i2, ', ratio =', g12.5 )
824 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
825 $ i2, ', test(', i2, ') =', g12.5 )
826 9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
827 $ ', test(', i2, ') =', g12.5 )
828 RETURN
829*
830* End of DCHKSY_ROOK
831*
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine dlarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
DLARHS
Definition dlarhs.f:205
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine derrsy(path, nunit)
DERRSY
Definition derrsy.f:55
subroutine dget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
DGET04
Definition dget04.f:102
double precision function dget06(rcond, rcondc)
DGET06
Definition dget06.f:55
subroutine dlatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
DLATB4
Definition dlatb4.f:120
subroutine dlatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
DLATMS
Definition dlatms.f:321
subroutine dpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
DPOT02
Definition dpot02.f:127
subroutine dpot03(uplo, n, a, lda, ainv, ldainv, work, ldwork, rwork, rcond, resid)
DPOT03
Definition dpot03.f:125
subroutine dsyt01_rook(uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid)
DSYT01_ROOK
subroutine dgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, info)
DGESVD computes the singular value decomposition (SVD) for GE matrices
Definition dgesvd.f:211
subroutine dsycon_rook(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
DSYCON_ROOK
subroutine dsytrf_rook(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRF_ROOK
subroutine dsytri_rook(uplo, n, a, lda, ipiv, work, info)
DSYTRI_ROOK
subroutine dsytrs_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
DSYTRS_ROOK
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:114
double precision function dlansy(norm, uplo, n, a, lda, work)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansy.f:122
Here is the call graph for this function:
Here is the caller graph for this function: