LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgedmdq()

subroutine dgedmdq ( character, intent(in)  jobs,
character, intent(in)  jobz,
character, intent(in)  jobr,
character, intent(in)  jobq,
character, intent(in)  jobt,
character, intent(in)  jobf,
integer, intent(in)  whtsvd,
integer, intent(in)  m,
integer, intent(in)  n,
real(kind=wp), dimension(ldf,*), intent(inout)  f,
integer, intent(in)  ldf,
real(kind=wp), dimension(ldx,*), intent(out)  x,
integer, intent(in)  ldx,
real(kind=wp), dimension(ldy,*), intent(out)  y,
integer, intent(in)  ldy,
integer, intent(in)  nrnk,
real(kind=wp), intent(in)  tol,
integer, intent(out)  k,
real(kind=wp), dimension(*), intent(out)  reig,
real(kind=wp), dimension(*), intent(out)  imeig,
real(kind=wp), dimension(ldz,*), intent(out)  z,
integer, intent(in)  ldz,
real(kind=wp), dimension(*), intent(out)  res,
real(kind=wp), dimension(ldb,*), intent(out)  b,
integer, intent(in)  ldb,
real(kind=wp), dimension(ldv,*), intent(out)  v,
integer, intent(in)  ldv,
real(kind=wp), dimension(lds,*), intent(out)  s,
integer, intent(in)  lds,
real(kind=wp), dimension(*), intent(out)  work,
integer, intent(in)  lwork,
integer, dimension(*), intent(out)  iwork,
integer, intent(in)  liwork,
integer, intent(out)  info 
)

DGEDMDQ computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.

Purpose:
     DGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
     a pair of data snapshot matrices, using a QR factorization
     based compression of the data. For the input matrices
     X and Y such that Y = A*X with an unaccessible matrix
     A, DGEDMDQ computes a certain number of Ritz pairs of A using
     the standard Rayleigh-Ritz extraction from a subspace of
     range(X) that is determined using the leading left singular 
     vectors of X. Optionally, DGEDMDQ returns the residuals 
     of the computed Ritz pairs, the information needed for
     a refinement of the Ritz vectors, or the eigenvectors of
     the Exact DMD.
     For further details see the references listed
     below. For more details of the implementation see [3].      
References:
    [1] P. Schmid: Dynamic mode decomposition of numerical
        and experimental data,
        Journal of Fluid Mechanics 656, 5-28, 2010.
    [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
        decompositions: analysis and enhancements,
        SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
    [3] Z. Drmac: A LAPACK implementation of the Dynamic
        Mode Decomposition I. Technical report. AIMDyn Inc.
        and LAPACK Working Note 298.      
    [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. 
        Brunton, N. Kutz: On Dynamic Mode Decomposition:
        Theory and Applications, Journal of Computational
        Dynamics 1(2), 391 -421, 2014.
Developed and supported by:
    Developed and coded by Zlatko Drmac, Faculty of Science,
    University of Zagreb;  drmac@math.hr
    In cooperation with
    AIMdyn Inc., Santa Barbara, CA.
    and supported by
    - DARPA SBIR project "Koopman Operator-Based Forecasting
    for Nonstationary Processes from Near-Term, Limited
    Observational Data" Contract No: W31P4Q-21-C-0007
    - DARPA PAI project "Physics-Informed Machine Learning
    Methodologies" Contract No: HR0011-18-9-0033
    - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
    Framework for Space-Time Analysis of Process Dynamics"
    Contract No: HR0011-16-C-0116
    Any opinions, findings and conclusions or recommendations 
    expressed in this material are those of the author and 
    do not necessarily reflect the views of the DARPA SBIR 
    Program Office.      
Distribution Statement A:
    Approved for Public Release, Distribution Unlimited.
    Cleared by DARPA on September 29, 2022  
Parameters
[in]JOBS
    JOBS (input) CHARACTER*1
    Determines whether the initial data snapshots are scaled
    by a diagonal matrix. The data snapshots are the columns
    of F. The leading N-1 columns of F are denoted X and the
    trailing N-1 columns are denoted Y. 
    'S' :: The data snapshots matrices X and Y are multiplied
           with a diagonal matrix D so that X*D has unit
           nonzero columns (in the Euclidean 2-norm)
    'C' :: The snapshots are scaled as with the 'S' option.
           If it is found that an i-th column of X is zero
           vector and the corresponding i-th column of Y is
           non-zero, then the i-th column of Y is set to
           zero and a warning flag is raised.
    'Y' :: The data snapshots matrices X and Y are multiplied
           by a diagonal matrix D so that Y*D has unit
           nonzero columns (in the Euclidean 2-norm)    
    'N' :: No data scaling.   
[in]JOBZ
    JOBZ (input) CHARACTER*1
    Determines whether the eigenvectors (Koopman modes) will
    be computed.
    'V' :: The eigenvectors (Koopman modes) will be computed
           and returned in the matrix Z.
           See the description of Z.
    'F' :: The eigenvectors (Koopman modes) will be returned
           in factored form as the product Z*V, where Z
           is orthonormal and V contains the eigenvectors
           of the corresponding Rayleigh quotient.
           See the descriptions of F, V, Z.
    'Q' :: The eigenvectors (Koopman modes) will be returned
           in factored form as the product Q*Z, where Z
           contains the eigenvectors of the compression of the
           underlying discretized operator onto the span of
           the data snapshots. See the descriptions of F, V, Z.  
           Q is from the initial QR factorization.      
    'N' :: The eigenvectors are not computed.  
[in]JOBR
    JOBR (input) CHARACTER*1 
    Determines whether to compute the residuals.
    'R' :: The residuals for the computed eigenpairs will
           be computed and stored in the array RES.
           See the description of RES.
           For this option to be legal, JOBZ must be 'V'.
    'N' :: The residuals are not computed.
[in]JOBQ
    JOBQ (input) CHARACTER*1 
    Specifies whether to explicitly compute and return the
    orthogonal matrix from the QR factorization.
    'Q' :: The matrix Q of the QR factorization of the data
           snapshot matrix is computed and stored in the
           array F. See the description of F.       
    'N' :: The matrix Q is not explicitly computed.
[in]JOBT
    JOBT (input) CHARACTER*1 
    Specifies whether to return the upper triangular factor
    from the QR factorization.
    'R' :: The matrix R of the QR factorization of the data 
           snapshot matrix F is returned in the array Y.
           See the description of Y and Further details.       
    'N' :: The matrix R is not returned.    
[in]JOBF
    JOBF (input) CHARACTER*1
    Specifies whether to store information needed for post-
    processing (e.g. computing refined Ritz vectors)
    'R' :: The matrix needed for the refinement of the Ritz
           vectors is computed and stored in the array B.
           See the description of B.
    'E' :: The unscaled eigenvectors of the Exact DMD are 
           computed and returned in the array B. See the
           description of B.
    'N' :: No eigenvector refinement data is computed.
    To be useful on exit, this option needs JOBQ='Q'.
[in]WHTSVD
    WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
    Allows for a selection of the SVD algorithm from the
    LAPACK library.
    1 :: DGESVD (the QR SVD algorithm)
    2 :: DGESDD (the Divide and Conquer algorithm; if enough
         workspace available, this is the fastest option)
    3 :: DGESVDQ (the preconditioned QR SVD  ; this and 4
         are the most accurate options)
    4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3
         are the most accurate options)
    For the four methods above, a significant difference in
    the accuracy of small singular values is possible if
    the snapshots vary in norm so that X is severely
    ill-conditioned. If small (smaller than EPS*||X||)
    singular values are of interest and JOBS=='N',  then
    the options (3, 4) give the most accurate results, where
    the option 4 is slightly better and with stronger 
    theoretical background.
    If JOBS=='S', i.e. the columns of X will be normalized,
    then all methods give nearly equally accurate results.
[in]M
    M (input) INTEGER, M >= 0 
    The state space dimension (the number of rows of F).
[in]N
    N (input) INTEGER, 0 <= N <= M
    The number of data snapshots from a single trajectory,
    taken at equidistant discrete times. This is the 
    number of columns of F.
[in,out]F
    F (input/output) REAL(KIND=WP) M-by-N array
    > On entry,
    the columns of F are the sequence of data snapshots 
    from a single trajectory, taken at equidistant discrete
    times. It is assumed that the column norms of F are 
    in the range of the normalized floating point numbers. 
    < On exit,
    If JOBQ == 'Q', the array F contains the orthogonal 
    matrix/factor of the QR factorization of the initial 
    data snapshots matrix F. See the description of JOBQ. 
    If JOBQ == 'N', the entries in F strictly below the main
    diagonal contain, column-wise, the information on the 
    Householder vectors, as returned by DGEQRF. The 
    remaining information to restore the orthogonal matrix
    of the initial QR factorization is stored in WORK(1:N). 
    See the description of WORK.
[in]LDF
    LDF (input) INTEGER, LDF >= M 
    The leading dimension of the array F.
[in,out]X
    X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
    X is used as workspace to hold representations of the
    leading N-1 snapshots in the orthonormal basis computed
    in the QR factorization of F.
    On exit, the leading K columns of X contain the leading
    K left singular vectors of the above described content
    of X. To lift them to the space of the left singular
    vectors U(:,1:K)of the input data, pre-multiply with the 
    Q factor from the initial QR factorization. 
    See the descriptions of F, K, V  and Z.
[in]LDX
    LDX (input) INTEGER, LDX >= N  
    The leading dimension of the array X. 
[in,out]Y
    Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
    Y is used as workspace to hold representations of the
    trailing N-1 snapshots in the orthonormal basis computed
    in the QR factorization of F.
    On exit, 
    If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
    triangular factor from the QR factorization of the data
    snapshot matrix F.
[in]LDY
    LDY (input) INTEGER , LDY >= N
    The leading dimension of the array Y.   
[in]NRNK
    NRNK (input) INTEGER
    Determines the mode how to compute the numerical rank,
    i.e. how to truncate small singular values of the input
    matrix X. On input, if
    NRNK = -1 :: i-th singular value sigma(i) is truncated
                 if sigma(i) <= TOL*sigma(1)
                 This option is recommended.  
    NRNK = -2 :: i-th singular value sigma(i) is truncated
                 if sigma(i) <= TOL*sigma(i-1)
                 This option is included for R&D purposes.
                 It requires highly accurate SVD, which
                 may not be feasible.       
    The numerical rank can be enforced by using positive 
    value of NRNK as follows: 
    0 < NRNK <= N-1 :: at most NRNK largest singular values
    will be used. If the number of the computed nonzero
    singular values is less than NRNK, then only those
    nonzero values will be used and the actually used
    dimension is less than NRNK. The actual number of
    the nonzero singular values is returned in the variable
    K. See the description of K.
[in]TOL
     TOL (input) REAL(KIND=WP), 0 <= TOL < 1
     The tolerance for truncating small singular values.
     See the description of NRNK.  
[out]K
     K (output) INTEGER,  0 <= K <= N 
     The dimension of the SVD/POD basis for the leading N-1
     data snapshots (columns of F) and the number of the 
     computed Ritz pairs. The value of K is determined
     according to the rule set by the parameters NRNK and 
     TOL. See the descriptions of NRNK and TOL. 
[out]REIG
    REIG (output) REAL(KIND=WP) (N-1)-by-1 array
    The leading K (K<=N) entries of REIG contain
    the real parts of the computed eigenvalues
    REIG(1:K) + sqrt(-1)*IMEIG(1:K).
    See the descriptions of K, IMEIG, Z.
[out]IMEIG
    IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array
    The leading K (K<N) entries of REIG contain
    the imaginary parts of the computed eigenvalues
    REIG(1:K) + sqrt(-1)*IMEIG(1:K).
    The eigenvalues are determined as follows:
    If IMEIG(i) == 0, then the corresponding eigenvalue is
    real, LAMBDA(i) = REIG(i).
    If IMEIG(i)>0, then the corresponding complex
    conjugate pair of eigenvalues reads
    LAMBDA(i)   = REIG(i) + sqrt(-1)*IMAG(i)
    LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
    That is, complex conjugate pairs have consequtive
    indices (i,i+1), with the positive imaginary part
    listed first.
    See the descriptions of K, REIG, Z.     
[out]Z
    Z (workspace/output) REAL(KIND=WP)  M-by-(N-1) array
    If JOBZ =='V' then
       Z contains real Ritz vectors as follows:
       If IMEIG(i)=0, then Z(:,i) is an eigenvector of
       the i-th Ritz value.
       If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
       [Z(:,i) Z(:,i+1)] span an invariant subspace and
       the Ritz values extracted from this subspace are
       REIG(i) + sqrt(-1)*IMEIG(i) and
       REIG(i) - sqrt(-1)*IMEIG(i).
       The corresponding eigenvectors are
       Z(:,i) + sqrt(-1)*Z(:,i+1) and
       Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
    If JOBZ == 'F', then the above descriptions hold for
    the columns of Z*V, where the columns of V are the
    eigenvectors of the K-by-K Rayleigh quotient, and Z is
    orthonormal. The columns of V are similarly structured:
    If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if 
    IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and
                      Z*V(:,i)-sqrt(-1)*Z*V(:,i+1)
    are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
    See the descriptions of REIG, IMEIG, X and V.
[in]LDZ
    LDZ (input) INTEGER , LDZ >= M
    The leading dimension of the array Z.
[out]RES
    RES (output) REAL(KIND=WP) (N-1)-by-1 array
    RES(1:K) contains the residuals for the K computed 
    Ritz pairs.       
    If LAMBDA(i) is real, then
       RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
    If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
    then
    RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
    where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
              [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
    It holds that
    RES(i)   = || A*ZC(:,i)   - LAMBDA(i)  *ZC(:,i)   ||_2
    RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
    where ZC(:,i)   =  Z(:,i) + sqrt(-1)*Z(:,i+1)
          ZC(:,i+1) =  Z(:,i) - sqrt(-1)*Z(:,i+1)
    See the description of Z.
[out]B
    B (output) REAL(KIND=WP)  MIN(M,N)-by-(N-1) array.
    IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
    be used for computing the refined vectors; see further 
    details in the provided references. 
    If JOBF == 'E', B(1:N,1;K) contains 
    A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
    Exact DMD, up to scaling by the inverse eigenvalues.   
    In both cases, the content of B can be lifted to the 
    original dimension of the input data by pre-multiplying
    with the Q factor from the initial QR factorization.
    Here A denotes a compression of the underlying operator.
    See the descriptions of F and X.
    If JOBF =='N', then B is not referenced.
[in]LDB
    LDB (input) INTEGER, LDB >= MIN(M,N)
    The leading dimension of the array B.
[out]V
    V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array
    On exit, V(1:K,1:K) contains the K eigenvectors of
    the Rayleigh quotient. The eigenvectors of a complex
    conjugate pair of eigenvalues are returned in real form
    as explained in the description of Z. The Ritz vectors
    (returned in Z) are the product of X and V; see
    the descriptions of X and Z.
[in]LDV
    LDV (input) INTEGER, LDV >= N-1
    The leading dimension of the array V.
[out]S
    S (output) REAL(KIND=WP) (N-1)-by-(N-1) array
    The array S(1:K,1:K) is used for the matrix Rayleigh
    quotient. This content is overwritten during
    the eigenvalue decomposition by DGEEV.
    See the description of K.
[in]LDS
    LDS (input) INTEGER, LDS >= N-1        
    The leading dimension of the array S.
[out]WORK
    WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
    On exit, 
    WORK(1:MIN(M,N)) contains the scalar factors of the 
    elementary reflectors as returned by DGEQRF of the 
    M-by-N input matrix F.
    WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of 
    the input submatrix F(1:M,1:N-1).
    If the call to DGEDMDQ is only workspace query, then
    WORK(1) contains the minimal workspace length and
    WORK(2) is the optimal workspace length. Hence, the
    length of work is at least 2.
    See the description of LWORK.
[in]LWORK
    LWORK (input) INTEGER
    The minimal length of the  workspace vector WORK.
    LWORK is calculated as follows:
    Let MLWQR  = N (minimal workspace for DGEQRF[M,N])
        MLWDMD = minimal workspace for DGEDMD (see the
                 description of LWORK in DGEDMD) for 
                 snapshots of dimensions MIN(M,N)-by-(N-1)
        MLWMQR = N (minimal workspace for 
                   DORMQR['L','N',M,N,N])
        MLWGQR = N (minimal workspace for DORGQR[M,N,N])
    Then
    LWORK = MAX(N+MLWQR, N+MLWDMD)
    is updated as follows:
       if   JOBZ == 'V' or JOBZ == 'F' THEN 
            LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWMQR )
       if   JOBQ == 'Q' THEN
            LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWGQR)
    If on entry LWORK = -1, then a workspace query is
    assumed and the procedure only computes the minimal
    and the optimal workspace lengths for both WORK and
    IWORK. See the descriptions of WORK and IWORK.          
[out]IWORK
    IWORK (workspace/output) INTEGER LIWORK-by-1 array
    Workspace that is required only if WHTSVD equals
    2 , 3 or 4. (See the description of WHTSVD).
    If on entry LWORK =-1 or LIWORK=-1, then the
    minimal length of IWORK is computed and returned in
    IWORK(1). See the description of LIWORK.
[in]LIWORK
    LIWORK (input) INTEGER
    The minimal length of the workspace vector IWORK.
    If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
    Let M1=MIN(M,N), N1=N-1. Then    
    If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1))
    If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1)
    If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1)
    If on entry LIWORK = -1, then a workspace query is
    assumed and the procedure only computes the minimal
    and the optimal workspace lengths for both WORK and
    IWORK. See the descriptions of WORK and IWORK.
[out]INFO
    INFO (output) INTEGER
    -i < 0 :: On entry, the i-th argument had an
              illegal value
       = 0 :: Successful return.
       = 1 :: Void input. Quick exit (M=0 or N=0).
       = 2 :: The SVD computation of X did not converge.
              Suggestion: Check the input data and/or
              repeat with different WHTSVD.
       = 3 :: The computation of the eigenvalues did not
              converge.
       = 4 :: If data scaling was requested on input and
              the procedure found inconsistency in the data
              such that for some column index i,
              X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
              to zero if JOBS=='C'. The computation proceeds
              with original or modified data and warning
              flag is set with INFO=4.  
Author
Zlatko Drmac

Definition at line 571 of file dgedmdq.f90.

576!
577! -- LAPACK driver routine --
578!
579! -- LAPACK is a software package provided by University of --
580! -- Tennessee, University of California Berkeley, University of --
581! -- Colorado Denver and NAG Ltd.. --
582!
583!.....
584 USE iso_fortran_env
585 IMPLICIT NONE
586 INTEGER, PARAMETER :: WP = real64
587!
588! Scalar arguments
589! ~~~~~~~~~~~~~~~~
590 CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
591 jobt, jobf
592 INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
593 ldy, nrnk, ldz, ldb, ldv, &
594 lds, lwork, liwork
595 INTEGER, INTENT(OUT) :: INFO, K
596 REAL(KIND=wp), INTENT(IN) :: tol
597!
598! Array arguments
599! ~~~~~~~~~~~~~~~
600 REAL(KIND=wp), INTENT(INOUT) :: f(ldf,*)
601 REAL(KIND=wp), INTENT(OUT) :: x(ldx,*), y(ldy,*), &
602 z(ldz,*), b(ldb,*), &
603 v(ldv,*), s(lds,*)
604 REAL(KIND=wp), INTENT(OUT) :: reig(*), imeig(*), &
605 res(*)
606 REAL(KIND=wp), INTENT(OUT) :: work(*)
607 INTEGER, INTENT(OUT) :: IWORK(*)
608!
609! Parameters
610! ~~~~~~~~~~
611 REAL(KIND=wp), PARAMETER :: one = 1.0_wp
612 REAL(KIND=wp), PARAMETER :: zero = 0.0_wp
613!
614! Local scalars
615! ~~~~~~~~~~~~~
616 INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, &
617 mlwmqr, mlwork, mlwqr, minmn, &
618 olwdmd, olwgqr, olwmqr, olwork, &
619 olwqr
620 LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
621 wnttrf, wntres, wntvec, wntvcf, &
622 wntvcq, wntref, wntex
623 CHARACTER(LEN=1) :: JOBVL
624!
625! Local array
626! ~~~~~~~~~~~
627 REAL(KIND=wp) :: rdummy(2)
628!
629! External functions (BLAS and LAPACK)
630! ~~~~~~~~~~~~~~~~~
631 LOGICAL LSAME
632 EXTERNAL lsame
633!
634! External subroutines (BLAS and LAPACK)
635! ~~~~~~~~~~~~~~~~~~~~
636 EXTERNAL dgemm
637 EXTERNAL dgedmd, dgeqrf, dlacpy, dlaset, dorgqr, &
639!
640! Intrinsic functions
641! ~~~~~~~~~~~~~~~~~~~
642 INTRINSIC max, min, int
643 !..........................................................
644 !
645 ! Test the input arguments
646 wntres = lsame(jobr,'R')
647 sccolx = lsame(jobs,'S') .OR. lsame( jobs, 'C' )
648 sccoly = lsame(jobs,'Y')
649 wntvec = lsame(jobz,'V')
650 wntvcf = lsame(jobz,'F')
651 wntvcq = lsame(jobz,'Q')
652 wntref = lsame(jobf,'R')
653 wntex = lsame(jobf,'E')
654 wantq = lsame(jobq,'Q')
655 wnttrf = lsame(jobt,'R')
656 minmn = min(m,n)
657 info = 0
658 lquery = ( ( lwork == -1 ) .OR. ( liwork == -1 ) )
659!
660 IF ( .NOT. (sccolx .OR. sccoly .OR. &
661 lsame(jobs,'N')) ) THEN
662 info = -1
663 ELSE IF ( .NOT. (wntvec .OR. wntvcf .OR. wntvcq &
664 .OR. lsame(jobz,'N')) ) then
665 info = -2
666 ELSE IF ( .NOT. (wntres .OR. lsame(jobr,'N')) .OR. &
667 ( wntres .AND. lsame(jobz,'N') ) ) then
668 info = -3
669 ELSE IF ( .NOT. (wantq .OR. lsame(jobq,'N')) ) then
670 info = -4
671 ELSE IF ( .NOT. ( wnttrf .OR. lsame(jobt,'N') ) ) then
672 info = -5
673 ELSE IF ( .NOT. (wntref .OR. wntex .OR. &
674 lsame(jobf,'N') ) ) then
675 info = -6
676 ELSE IF ( .NOT. ((whtsvd == 1).OR.(whtsvd == 2).OR. &
677 (whtsvd == 3).OR.(whtsvd == 4)) ) then
678 info = -7
679 ELSE IF ( m < 0 ) then
680 info = -8
681 ELSE IF ( ( n < 0 ) .OR. ( n > m+1 ) ) then
682 info = -9
683 ELSE IF ( ldf < m ) then
684 info = -11
685 ELSE IF ( ldx < minmn ) then
686 info = -13
687 ELSE IF ( ldy < minmn ) then
688 info = -15
689 ELSE IF ( .NOT. (( nrnk == -2).OR.(nrnk == -1).OR. &
690 ((nrnk >= 1).AND.(nrnk <=n ))) ) then
691 info = -16
692 ELSE IF ( ( tol < zero ) .OR. ( tol >= one ) ) then
693 info = -17
694 ELSE IF ( ldz < m ) then
695 info = -22
696 ELSE IF ( (wntref.OR.wntex ).AND.( ldb < minmn ) ) then
697 info = -25
698 ELSE IF ( ldv < n-1 ) then
699 info = -27
700 ELSE IF ( lds < n-1 ) then
701 info = -29
702 END IF
703!
704 IF ( wntvec .OR. wntvcf .OR. wntvcq ) then
705 jobvl = 'V'
706 else
707 jobvl = 'N'
708 END IF
709 IF ( info == 0 ) THEN
710 ! Compute the minimal and the optimal workspace
711 ! requirements. Simulate running the code and
712 ! determine minimal and optimal sizes of the
713 ! workspace at any moment of the run.
714 IF ( ( n == 0 ) .OR. ( n == 1 ) ) then
715 ! All output except K is void. INFO=1 signals
716 ! the void input. In case of a workspace query,
717 ! the minimal workspace lengths are returned.
718 IF ( lquery ) THEN
719 iwork(1) = 1
720 work(1) = 2
721 work(2) = 2
722 ELSE
723 k = 0
724 END IF
725 info = 1
726 return
727 END IF
728 mlwqr = max(1,n) ! Minimal workspace length for DGEQRF.
729 mlwork = minmn + mlwqr
730 IF ( lquery ) THEN
731 CALL dgeqrf( m, n, f, ldf, work, rdummy, -1, &
732 info1 )
733 olwqr = int(rdummy(1))
734 olwork = min(m,n) + olwqr
735 END IF
736 CALL dgedmd( jobs, jobvl, jobr, jobf, whtsvd, minmn,&
737 n-1, x, ldx, y, ldy, nrnk, tol, k, &
738 reig, imeig, z, ldz, res, b, ldb, &
739 v, ldv, s, lds, work, -1, iwork, &
740 liwork, info1 )
741 mlwdmd = int(work(1))
742 mlwork = max(mlwork, minmn + mlwdmd)
743 iminwr = iwork(1)
744 IF ( lquery ) THEN
745 olwdmd = int(work(2))
746 olwork = max(olwork, minmn+olwdmd)
747 END IF
748 IF ( wntvec .OR. wntvcf ) then
749 mlwmqr = max(1,n)
750 mlwork = max(mlwork,minmn+n-1+mlwmqr)
751 IF ( lquery ) then
752 CALL dormqr( 'L','N', m, n, minmn, f, ldf, &
753 work, z, ldz, work, -1, info1 )
754 olwmqr = int(work(1))
755 olwork = max(olwork,minmn+n-1+olwmqr)
756 END IF
757 END IF
758 IF ( wantq ) then
759 mlwgqr = n
760 mlwork = max(mlwork,minmn+n-1+mlwgqr)
761 IF ( lquery ) THEN
762 CALL dorgqr( m, minmn, minmn, f, ldf, work, &
763 work, -1, info1 )
764 olwgqr = int(work(1))
765 olwork = max(olwork,minmn+n-1+olwgqr)
766 END IF
767 END IF
768 iminwr = max( 1, iminwr )
769 mlwork = max( 2, mlwork )
770 IF ( lwork < mlwork .AND. (.NOT.lquery) ) info = -31
771 IF ( liwork < iminwr .AND. (.NOT.lquery) ) info = -33
772 END IF
773 IF( info /= 0 ) then
774 CALL xerbla( 'DGEDMDQ', -info )
775 return
776 ELSE IF ( lquery ) then
777! Return minimal and optimal workspace sizes
778 iwork(1) = iminwr
779 work(1) = mlwork
780 work(2) = olwork
781 return
782 END IF
783!.....
784! Initial QR factorization that is used to represent the
785! snapshots as elements of lower dimensional subspace.
786! For large scale computation with M >>N , at this place
787! one can use an out of core QRF.
788!
789 CALL dgeqrf( m, n, f, ldf, work, &
790 work(minmn+1), lwork-minmn, info1 )
791!
792! Define X and Y as the snapshots representations in the
793! orthogonal basis computed in the QR factorization.
794! X corresponds to the leading N-1 and Y to the trailing
795! N-1 snapshots.
796 CALL dlaset( 'L', minmn, n-1, zero, zero, x, ldx )
797 CALL dlacpy( 'U', minmn, n-1, f, ldf, x, ldx )
798 CALL dlacpy( 'A', minmn, n-1, f(1,2), ldf, y, ldy )
799 IF ( m >= 3 ) then
800 CALL dlaset( 'L', minmn-2, n-2, zero, zero, &
801 y(3,1), ldy )
802 END IF
803!
804! Compute the DMD of the projected snapshot pairs (X,Y)
805 CALL dgedmd( jobs, jobvl, jobr, jobf, whtsvd, minmn, &
806 n-1, x, ldx, y, ldy, nrnk, tol, k, &
807 reig, imeig, z, ldz, res, b, ldb, v, &
808 ldv, s, lds, work(minmn+1), lwork-minmn, &
809 iwork, liwork, info1 )
810 IF ( info1 == 2 .OR. info1 == 3 ) then
811 ! Return with error code. See DGEDMD for details.
812 info = info1
813 return
814 else
815 info = info1
816 END IF
817!
818! The Ritz vectors (Koopman modes) can be explicitly
819! formed or returned in factored form.
820 IF ( wntvec ) then
821 ! Compute the eigenvectors explicitly.
822 IF ( m > minmn ) CALL dlaset( 'A', m-minmn, k, zero, &
823 zero, z(minmn+1,1), ldz )
824 CALL dormqr( 'L','N', m, k, minmn, f, ldf, work, z, &
825 ldz, work(minmn+n), lwork-(minmn+n-1), info1 )
826 ELSE IF ( wntvcf ) THEN
827 ! Return the Ritz vectors (eigenvectors) in factored
828 ! form Z*V, where Z contains orthonormal matrix (the
829 ! product of Q from the initial QR factorization and
830 ! the SVD/POD_basis returned by DGEDMD in X) and the
831 ! second factor (the eigenvectors of the Rayleigh
832 ! quotient) is in the array V, as returned by DGEDMD.
833 CALL dlacpy( 'A', n, k, x, ldx, z, ldz )
834 IF ( m > n ) CALL dlaset( 'A', m-n, k, zero, zero, &
835 z(n+1,1), ldz )
836 CALL dormqr( 'L','N', m, k, minmn, f, ldf, work, z, &
837 ldz, work(minmn+n), lwork-(minmn+n-1), info1 )
838 END IF
839!
840! Some optional output variables:
841!
842! The upper triangular factor R in the initial QR
843! factorization is optionally returned in the array Y.
844! This is useful if this call to DGEDMDQ is to be
845! followed by a streaming DMD that is implemented in a
846! QR compressed form.
847 IF ( wnttrf ) THEN ! Return the upper triangular R in Y
848 CALL dlaset( 'A', minmn, n, zero, zero, y, ldy )
849 CALL dlacpy( 'U', minmn, n, f, ldf, y, ldy )
850 END IF
851!
852! The orthonormal/orthogonal factor Q in the initial QR
853! factorization is optionally returned in the array F.
854! Same as with the triangular factor above, this is
855! useful in a streaming DMD.
856 IF ( wantq ) THEN ! Q overwrites F
857 CALL dorgqr( m, minmn, minmn, f, ldf, work, &
858 work(minmn+n), lwork-(minmn+n-1), info1 )
859 END IF
860!
861 return
862!
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgedmd(jobs, jobz, jobr, jobf, whtsvd, m, n, x, ldx, y, ldy, nrnk, tol, k, reig, imeig, z, ldz, res, b, ldb, w, ldw, s, lds, work, lwork, iwork, liwork, info)
DGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
Definition dgedmd.f90:536
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:188
subroutine dgeqrf(m, n, a, lda, tau, work, lwork, info)
DGEQRF
Definition dgeqrf.f:146
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:110
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dorgqr(m, n, k, a, lda, tau, work, lwork, info)
DORGQR
Definition dorgqr.f:128
subroutine dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMQR
Definition dormqr.f:167
Here is the call graph for this function: