LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dqlt01()

subroutine dqlt01 ( integer m,
integer n,
double precision, dimension( lda, * ) a,
double precision, dimension( lda, * ) af,
double precision, dimension( lda, * ) q,
double precision, dimension( lda, * ) l,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( lwork ) work,
integer lwork,
double precision, dimension( * ) rwork,
double precision, dimension( * ) result )

DQLT01

Purpose:
!>
!> DQLT01 tests DGEQLF, which computes the QL factorization of an m-by-n
!> matrix A, and partially tests DORGQL which forms the m-by-m
!> orthogonal matrix Q.
!>
!> DQLT01 compares L with Q'*A, and checks that Q is orthogonal.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The m-by-n matrix A.
!> 
[out]AF
!>          AF is DOUBLE PRECISION array, dimension (LDA,N)
!>          Details of the QL factorization of A, as returned by DGEQLF.
!>          See DGEQLF for further details.
!> 
[out]Q
!>          Q is DOUBLE PRECISION array, dimension (LDA,M)
!>          The m-by-m orthogonal matrix Q.
!> 
[out]L
!>          L is DOUBLE PRECISION array, dimension (LDA,max(M,N))
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the arrays A, AF, Q and R.
!>          LDA >= max(M,N).
!> 
[out]TAU
!>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors, as returned
!>          by DGEQLF.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (LWORK)
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (M)
!> 
[out]RESULT
!>          RESULT is DOUBLE PRECISION array, dimension (2)
!>          The test ratios:
!>          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
!>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 124 of file dqlt01.f.

126*
127* -- LAPACK test routine --
128* -- LAPACK is a software package provided by Univ. of Tennessee, --
129* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130*
131* .. Scalar Arguments ..
132 INTEGER LDA, LWORK, M, N
133* ..
134* .. Array Arguments ..
135 DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), L( LDA, * ),
136 $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
137 $ WORK( LWORK )
138* ..
139*
140* =====================================================================
141*
142* .. Parameters ..
143 DOUBLE PRECISION ZERO, ONE
144 parameter( zero = 0.0d+0, one = 1.0d+0 )
145 DOUBLE PRECISION ROGUE
146 parameter( rogue = -1.0d+10 )
147* ..
148* .. Local Scalars ..
149 INTEGER INFO, MINMN
150 DOUBLE PRECISION ANORM, EPS, RESID
151* ..
152* .. External Functions ..
153 DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
154 EXTERNAL dlamch, dlange, dlansy
155* ..
156* .. External Subroutines ..
157 EXTERNAL dgemm, dgeqlf, dlacpy, dlaset, dorgql, dsyrk
158* ..
159* .. Intrinsic Functions ..
160 INTRINSIC dble, max, min
161* ..
162* .. Scalars in Common ..
163 CHARACTER*32 SRNAMT
164* ..
165* .. Common blocks ..
166 COMMON / srnamc / srnamt
167* ..
168* .. Executable Statements ..
169*
170 minmn = min( m, n )
171 eps = dlamch( 'Epsilon' )
172*
173* Copy the matrix A to the array AF.
174*
175 CALL dlacpy( 'Full', m, n, a, lda, af, lda )
176*
177* Factorize the matrix A in the array AF.
178*
179 srnamt = 'DGEQLF'
180 CALL dgeqlf( m, n, af, lda, tau, work, lwork, info )
181*
182* Copy details of Q
183*
184 CALL dlaset( 'Full', m, m, rogue, rogue, q, lda )
185 IF( m.GE.n ) THEN
186 IF( n.LT.m .AND. n.GT.0 )
187 $ CALL dlacpy( 'Full', m-n, n, af, lda, q( 1, m-n+1 ), lda )
188 IF( n.GT.1 )
189 $ CALL dlacpy( 'Upper', n-1, n-1, af( m-n+1, 2 ), lda,
190 $ q( m-n+1, m-n+2 ), lda )
191 ELSE
192 IF( m.GT.1 )
193 $ CALL dlacpy( 'Upper', m-1, m-1, af( 1, n-m+2 ), lda,
194 $ q( 1, 2 ), lda )
195 END IF
196*
197* Generate the m-by-m matrix Q
198*
199 srnamt = 'DORGQL'
200 CALL dorgql( m, m, minmn, q, lda, tau, work, lwork, info )
201*
202* Copy L
203*
204 CALL dlaset( 'Full', m, n, zero, zero, l, lda )
205 IF( m.GE.n ) THEN
206 IF( n.GT.0 )
207 $ CALL dlacpy( 'Lower', n, n, af( m-n+1, 1 ), lda,
208 $ l( m-n+1, 1 ), lda )
209 ELSE
210 IF( n.GT.m .AND. m.GT.0 )
211 $ CALL dlacpy( 'Full', m, n-m, af, lda, l, lda )
212 IF( m.GT.0 )
213 $ CALL dlacpy( 'Lower', m, m, af( 1, n-m+1 ), lda,
214 $ l( 1, n-m+1 ), lda )
215 END IF
216*
217* Compute L - Q'*A
218*
219 CALL dgemm( 'Transpose', 'No transpose', m, n, m, -one, q, lda, a,
220 $ lda, one, l, lda )
221*
222* Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
223*
224 anorm = dlange( '1', m, n, a, lda, rwork )
225 resid = dlange( '1', m, n, l, lda, rwork )
226 IF( anorm.GT.zero ) THEN
227 result( 1 ) = ( ( resid / dble( max( 1, m ) ) ) / anorm ) / eps
228 ELSE
229 result( 1 ) = zero
230 END IF
231*
232* Compute I - Q'*Q
233*
234 CALL dlaset( 'Full', m, m, zero, one, l, lda )
235 CALL dsyrk( 'Upper', 'Transpose', m, m, -one, q, lda, one, l,
236 $ lda )
237*
238* Compute norm( I - Q'*Q ) / ( M * EPS ) .
239*
240 resid = dlansy( '1', 'Upper', m, l, lda, rwork )
241*
242 result( 2 ) = ( resid / dble( max( 1, m ) ) ) / eps
243*
244 RETURN
245*
246* End of DQLT01
247*
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:188
subroutine dgeqlf(m, n, a, lda, tau, work, lwork, info)
DGEQLF
Definition dgeqlf.f:137
subroutine dsyrk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
DSYRK
Definition dsyrk.f:169
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:112
double precision function dlansy(norm, uplo, n, a, lda, work)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansy.f:120
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:108
subroutine dorgql(m, n, k, a, lda, tau, work, lwork, info)
DORGQL
Definition dorgql.f:126
Here is the call graph for this function:
Here is the caller graph for this function: