136 SUBROUTINE dgeqlf( M, N, A, LDA, TAU, WORK, LWORK, INFO )
143 INTEGER INFO, LDA, LWORK, M, N
146 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
153 INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
154 $ MU, NB, NBMIN, NU, NX
171 lquery = ( lwork.EQ.-1 )
174 ELSE IF( n.LT.0 )
THEN
176 ELSE IF( lda.LT.max( 1, m ) )
THEN
185 nb = ilaenv( 1,
'DGEQLF',
' ', m, n, -1, -1 )
190 IF( .NOT.lquery )
THEN
191 IF( lwork.LE.0 .OR. ( m.GT.0 .AND. lwork.LT.max( 1, n ) ) )
197 CALL xerbla(
'DGEQLF', -info )
199 ELSE IF( lquery )
THEN
212 IF( nb.GT.1 .AND. nb.LT.k )
THEN
216 nx = max( 0, ilaenv( 3,
'DGEQLF',
' ', m, n, -1, -1 ) )
223 IF( lwork.LT.iws )
THEN
229 nbmin = max( 2, ilaenv( 2,
'DGEQLF',
' ', m, n, -1,
235 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k )
THEN
240 ki = ( ( k-nx-1 ) / nb )*nb
243 DO 10 i = k - kk + ki + 1, k - kk + 1, -nb
244 ib = min( k-i+1, nb )
249 CALL dgeql2( m-k+i+ib-1, ib, a( 1, n-k+i ), lda,
252 IF( n-k+i.GT.1 )
THEN
257 CALL dlarft(
'Backward',
'Columnwise', m-k+i+ib-1, ib,
258 $ a( 1, n-k+i ), lda, tau( i ), work, ldwork )
262 CALL dlarfb(
'Left',
'Transpose',
'Backward',
263 $
'Columnwise', m-k+i+ib-1, n-k+i-1, ib,
264 $ a( 1, n-k+i ), lda, work, ldwork, a, lda,
265 $ work( ib+1 ), ldwork )
268 mu = m - k + i + nb - 1
269 nu = n - k + i + nb - 1
277 IF( mu.GT.0 .AND. nu.GT.0 )
278 $
CALL dgeql2( mu, nu, a, lda, tau, work, iinfo )
subroutine dgeql2(m, n, a, lda, tau, work, info)
DGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
subroutine dgeqlf(m, n, a, lda, tau, work, lwork, info)
DGEQLF
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
recursive subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH