LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cchkhe_aa.f
Go to the documentation of this file.
1*> \brief \b CCHKHE_AA
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CCHKHE_AA( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12* THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13* XACT, WORK, RWORK, IWORK, NOUT )
14*
15* .. Scalar Arguments ..
16* LOGICAL TSTERR
17* INTEGER NN, NNB, NNS, NOUT
18* REAL THRESH
19* ..
20* .. Array Arguments ..
21* LOGICAL DOTYPE( * )
22* INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23* REAL RWORK( * )
24* COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
25* $ WORK( * ), X( * ), XACT( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> CCHKHE_AA tests CHETRF_AA, -TRS_AA.
35*> \endverbatim
36*
37* Arguments:
38* ==========
39*
40*> \param[in] DOTYPE
41*> \verbatim
42*> DOTYPE is LOGICAL array, dimension (NTYPES)
43*> The matrix types to be used for testing. Matrices of type j
44*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46*> \endverbatim
47*>
48*> \param[in] NN
49*> \verbatim
50*> NN is INTEGER
51*> The number of values of N contained in the vector NVAL.
52*> \endverbatim
53*>
54*> \param[in] NVAL
55*> \verbatim
56*> NVAL is INTEGER array, dimension (NN)
57*> The values of the matrix dimension N.
58*> \endverbatim
59*>
60*> \param[in] NNB
61*> \verbatim
62*> NNB is INTEGER
63*> The number of values of NB contained in the vector NBVAL.
64*> \endverbatim
65*>
66*> \param[in] NBVAL
67*> \verbatim
68*> NBVAL is INTEGER array, dimension (NNB)
69*> The values of the blocksize NB.
70*> \endverbatim
71*>
72*> \param[in] NNS
73*> \verbatim
74*> NNS is INTEGER
75*> The number of values of NRHS contained in the vector NSVAL.
76*> \endverbatim
77*>
78*> \param[in] NSVAL
79*> \verbatim
80*> NSVAL is INTEGER array, dimension (NNS)
81*> The values of the number of right hand sides NRHS.
82*> \endverbatim
83*>
84*> \param[in] THRESH
85*> \verbatim
86*> THRESH is REAL
87*> The threshold value for the test ratios. A result is
88*> included in the output file if RESULT >= THRESH. To have
89*> every test ratio printed, use THRESH = 0.
90*> \endverbatim
91*>
92*> \param[in] TSTERR
93*> \verbatim
94*> TSTERR is LOGICAL
95*> Flag that indicates whether error exits are to be tested.
96*> \endverbatim
97*>
98*> \param[in] NMAX
99*> \verbatim
100*> NMAX is INTEGER
101*> The maximum value permitted for N, used in dimensioning the
102*> work arrays.
103*> \endverbatim
104*>
105*> \param[out] A
106*> \verbatim
107*> A is COMPLEX array, dimension (NMAX*NMAX)
108*> \endverbatim
109*>
110*> \param[out] AFAC
111*> \verbatim
112*> AFAC is COMPLEX array, dimension (NMAX*NMAX)
113*> \endverbatim
114*>
115*> \param[out] AINV
116*> \verbatim
117*> AINV is COMPLEX array, dimension (NMAX*NMAX)
118*> \endverbatim
119*>
120*> \param[out] B
121*> \verbatim
122*> B is COMPLEX array, dimension (NMAX*NSMAX)
123*> where NSMAX is the largest entry in NSVAL.
124*> \endverbatim
125*>
126*> \param[out] X
127*> \verbatim
128*> X is COMPLEX array, dimension (NMAX*NSMAX)
129*> \endverbatim
130*>
131*> \param[out] XACT
132*> \verbatim
133*> XACT is COMPLEX array, dimension (NMAX*NSMAX)
134*> \endverbatim
135*>
136*> \param[out] WORK
137*> \verbatim
138*> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
139*> \endverbatim
140*>
141*> \param[out] RWORK
142*> \verbatim
143*> RWORK is REAL array, dimension (max(NMAX,2*NSMAX))
144*> \endverbatim
145*>
146*> \param[out] IWORK
147*> \verbatim
148*> IWORK is INTEGER array, dimension (NMAX)
149*> \endverbatim
150*>
151*> \param[in] NOUT
152*> \verbatim
153*> NOUT is INTEGER
154*> The unit number for output.
155*> \endverbatim
156*
157* Authors:
158* ========
159*
160*> \author Univ. of Tennessee
161*> \author Univ. of California Berkeley
162*> \author Univ. of Colorado Denver
163*> \author NAG Ltd.
164*
165*> \ingroup complex_lin
166*
167* =====================================================================
168 SUBROUTINE cchkhe_aa( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
169 $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B,
170 $ X, XACT, WORK, RWORK, IWORK, NOUT )
171*
172* -- LAPACK test routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176 IMPLICIT NONE
177*
178* .. Scalar Arguments ..
179 LOGICAL TSTERR
180 INTEGER NMAX, NN, NNB, NNS, NOUT
181 REAL THRESH
182* ..
183* .. Array Arguments ..
184 LOGICAL DOTYPE( * )
185 INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
186 REAL RWORK( * )
187 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
188 $ work( * ), x( * ), xact( * )
189* ..
190*
191* =====================================================================
192*
193* .. Parameters ..
194 REAL ZERO
195 PARAMETER ( ZERO = 0.0e+0 )
196 COMPLEX CZERO
197 parameter( czero = ( 0.0e+0, 0.0e+0 ) )
198 INTEGER NTYPES
199 parameter( ntypes = 10 )
200 INTEGER NTESTS
201 parameter( ntests = 9 )
202* ..
203* .. Local Scalars ..
204 LOGICAL ZEROT
205 CHARACTER DIST, TYPE, UPLO, XTYPE
206 CHARACTER*3 PATH, MATPATH
207 INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
208 $ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
209 $ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
210 REAL ANORM, CNDNUM
211* ..
212* .. Local Arrays ..
213 CHARACTER UPLOS( 2 )
214 INTEGER ISEED( 4 ), ISEEDY( 4 )
215 REAL RESULT( NTESTS )
216* ..
217* .. External Subroutines ..
221* ..
222* .. Intrinsic Functions ..
223 INTRINSIC max, min
224* ..
225* .. Scalars in Common ..
226 LOGICAL LERR, OK
227 CHARACTER*32 SRNAMT
228 INTEGER INFOT, NUNIT
229* ..
230* .. Common blocks ..
231 COMMON / infoc / infot, nunit, ok, lerr
232 COMMON / srnamc / srnamt
233* ..
234* .. Data statements ..
235 DATA iseedy / 1988, 1989, 1990, 1991 /
236 DATA uplos / 'U', 'L' /
237* ..
238* .. Executable Statements ..
239*
240* Initialize constants and the random number seed.
241*
242*
243* Test path
244*
245 path( 1: 1 ) = 'Complex precision'
246 path( 2: 3 ) = 'HA'
247*
248* Path to generate matrices
249*
250 matpath( 1: 1 ) = 'Complex precision'
251 matpath( 2: 3 ) = 'HE'
252 nrun = 0
253 nfail = 0
254 nerrs = 0
255 DO 10 i = 1, 4
256 iseed( i ) = iseedy( i )
257 10 CONTINUE
258*
259* Test the error exits
260*
261 IF( tsterr )
262 $ CALL cerrhe( path, nout )
263 infot = 0
264*
265* Set the minimum block size for which the block routine should
266* be used, which will be later returned by ILAENV
267*
268 CALL xlaenv( 2, 2 )
269*
270* Do for each value of N in NVAL
271*
272 DO 180 in = 1, nn
273 n = nval( in )
274 IF( n .GT. nmax ) THEN
275 nfail = nfail + 1
276 WRITE(nout, 9995) 'M ', n, nmax
277 GO TO 180
278 END IF
279 lda = max( n, 1 )
280 xtype = 'N'
281 nimat = ntypes
282 IF( n.LE.0 )
283 $ nimat = 1
284*
285 izero = 0
286 DO 170 imat = 1, nimat
287*
288* Do the tests only if DOTYPE( IMAT ) is true.
289*
290 IF( .NOT.dotype( imat ) )
291 $ GO TO 170
292*
293* Skip types 3, 4, 5, or 6 if the matrix size is too small.
294*
295 zerot = imat.GE.3 .AND. imat.LE.6
296 IF( zerot .AND. n.LT.imat-2 )
297 $ GO TO 170
298*
299* Do first for UPLO = 'U', then for UPLO = 'L'
300*
301 DO 160 iuplo = 1, 2
302 uplo = uplos( iuplo )
303*
304* Set up parameters with CLATB4 for the matrix generator
305* based on the type of matrix to be generated.
306*
307 CALL clatb4( matpath, imat, n, n, TYPE, kl, ku,
308 $ anorm, mode, cndnum, dist )
309*
310* Generate a matrix with CLATMS.
311*
312 srnamt = 'CLATMS'
313 CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
314 $ cndnum, anorm, kl, ku, uplo, a, lda, work,
315 $ info )
316*
317* Check error code from CLATMS and handle error.
318*
319 IF( info.NE.0 ) THEN
320 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
321 $ -1, -1, imat, nfail, nerrs, nout )
322*
323* Skip all tests for this generated matrix
324*
325 GO TO 160
326 END IF
327*
328* For types 3-6, zero one or more rows and columns of
329* the matrix to test that INFO is returned correctly.
330*
331 IF( zerot ) THEN
332 IF( imat.EQ.3 ) THEN
333 izero = 1
334 ELSE IF( imat.EQ.4 ) THEN
335 izero = n
336 ELSE
337 izero = n / 2 + 1
338 END IF
339*
340 IF( imat.LT.6 ) THEN
341*
342* Set row and column IZERO to zero.
343*
344 IF( iuplo.EQ.1 ) THEN
345 ioff = ( izero-1 )*lda
346 DO 20 i = 1, izero - 1
347 a( ioff+i ) = czero
348 20 CONTINUE
349 ioff = ioff + izero
350 DO 30 i = izero, n
351 a( ioff ) = czero
352 ioff = ioff + lda
353 30 CONTINUE
354 ELSE
355 ioff = izero
356 DO 40 i = 1, izero - 1
357 a( ioff ) = czero
358 ioff = ioff + lda
359 40 CONTINUE
360 ioff = ioff - izero
361 DO 50 i = izero, n
362 a( ioff+i ) = czero
363 50 CONTINUE
364 END IF
365 ELSE
366 IF( iuplo.EQ.1 ) THEN
367*
368* Set the first IZERO rows and columns to zero.
369*
370 ioff = 0
371 DO 70 j = 1, n
372 i2 = min( j, izero )
373 DO 60 i = 1, i2
374 a( ioff+i ) = czero
375 60 CONTINUE
376 ioff = ioff + lda
377 70 CONTINUE
378 izero = 1
379 ELSE
380*
381* Set the last IZERO rows and columns to zero.
382*
383 ioff = 0
384 DO 90 j = 1, n
385 i1 = max( j, izero )
386 DO 80 i = i1, n
387 a( ioff+i ) = czero
388 80 CONTINUE
389 ioff = ioff + lda
390 90 CONTINUE
391 END IF
392 END IF
393 ELSE
394 izero = 0
395 END IF
396*
397* End generate test matrix A.
398*
399*
400* Set the imaginary part of the diagonals.
401*
402 CALL claipd( n, a, lda+1, 0 )
403*
404* Do for each value of NB in NBVAL
405*
406 DO 150 inb = 1, nnb
407*
408* Set the optimal blocksize, which will be later
409* returned by ILAENV.
410*
411 nb = nbval( inb )
412 CALL xlaenv( 1, nb )
413*
414* Copy the test matrix A into matrix AFAC which
415* will be factorized in place. This is needed to
416* preserve the test matrix A for subsequent tests.
417*
418 CALL clacpy( uplo, n, n, a, lda, afac, lda )
419*
420* Compute the L*D*L**T or U*D*U**T factorization of the
421* matrix. IWORK stores details of the interchanges and
422* the block structure of D. AINV is a work array for
423* block factorization, LWORK is the length of AINV.
424*
425 lwork = max( 1, ( nb+1 )*lda )
426 srnamt = 'CHETRF_AA'
427 CALL chetrf_aa( uplo, n, afac, lda, iwork, ainv,
428 $ lwork, info )
429*
430* Adjust the expected value of INFO to account for
431* pivoting.
432*
433c IF( IZERO.GT.0 ) THEN
434c J = 1
435c K = IZERO
436c 100 CONTINUE
437c IF( J.EQ.K ) THEN
438c K = IWORK( J )
439c ELSE IF( IWORK( J ).EQ.K ) THEN
440c K = J
441c END IF
442c IF( J.LT.K ) THEN
443c J = J + 1
444c GO TO 100
445c END IF
446c ELSE
447 k = 0
448c END IF
449*
450* Check error code from CHETRF and handle error.
451*
452 IF( info.NE.k ) THEN
453 CALL alaerh( path, 'CHETRF_AA', info, k, uplo,
454 $ n, n, -1, -1, nb, imat, nfail, nerrs,
455 $ nout )
456 END IF
457*
458*+ TEST 1
459* Reconstruct matrix from factors and compute residual.
460*
461 CALL chet01_aa( uplo, n, a, lda, afac, lda, iwork,
462 $ ainv, lda, rwork, result( 1 ) )
463 nt = 1
464*
465*
466* Print information about the tests that did not pass
467* the threshold.
468*
469 DO 110 k = 1, nt
470 IF( result( k ).GE.thresh ) THEN
471 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
472 $ CALL alahd( nout, path )
473 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
474 $ result( k )
475 nfail = nfail + 1
476 END IF
477 110 CONTINUE
478 nrun = nrun + nt
479*
480* Skip solver test if INFO is not 0.
481*
482 IF( info.NE.0 ) THEN
483 GO TO 140
484 END IF
485*
486* Do for each value of NRHS in NSVAL.
487*
488 DO 130 irhs = 1, nns
489 nrhs = nsval( irhs )
490*
491*+ TEST 2 (Using TRS)
492* Solve and compute residual for A * X = B.
493*
494* Choose a set of NRHS random solution vectors
495* stored in XACT and set up the right hand side B
496*
497 srnamt = 'CLARHS'
498 CALL clarhs( matpath, xtype, uplo, ' ', n, n,
499 $ kl, ku, nrhs, a, lda, xact, lda,
500 $ b, lda, iseed, info )
501 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
502*
503 srnamt = 'CHETRS_AA'
504 lwork = max( 1, 3*n-2 )
505 CALL chetrs_aa( uplo, n, nrhs, afac, lda, iwork,
506 $ x, lda, work, lwork, info )
507*
508* Check error code from CHETRS and handle error.
509*
510 IF( info.NE.0 ) THEN
511 IF( izero.EQ.0 ) THEN
512 CALL alaerh( path, 'CHETRS_AA', info, 0,
513 $ uplo, n, n, -1, -1, nrhs, imat,
514 $ nfail, nerrs, nout )
515 END IF
516 ELSE
517 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda
518 $ )
519*
520* Compute the residual for the solution
521*
522 CALL cpot02( uplo, n, nrhs, a, lda, x, lda,
523 $ work, lda, rwork, result( 2 ) )
524*
525* Print information about the tests that did not pass
526* the threshold.
527*
528 DO 120 k = 2, 2
529 IF( result( k ).GE.thresh ) THEN
530 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
531 $ CALL alahd( nout, path )
532 WRITE( nout, fmt = 9998 )uplo, n, nrhs,
533 $ imat, k, result( k )
534 nfail = nfail + 1
535 END IF
536 120 CONTINUE
537 END IF
538 nrun = nrun + 1
539*
540* End do for each value of NRHS in NSVAL.
541*
542 130 CONTINUE
543 140 CONTINUE
544 150 CONTINUE
545 160 CONTINUE
546 170 CONTINUE
547 180 CONTINUE
548*
549* Print a summary of the results.
550*
551 CALL alasum( path, nout, nfail, nrun, nerrs )
552*
553 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
554 $ i2, ', test ', i2, ', ratio =', g12.5 )
555 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
556 $ i2, ', test(', i2, ') =', g12.5 )
557 9995 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be <=',
558 $ i6 )
559 RETURN
560*
561* End of CCHKHE_AA
562*
563 END
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine cchkhe_aa(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
CCHKHE_AA
Definition cchkhe_aa.f:171
subroutine cerrhe(path, nunit)
CERRHE
Definition cerrhe.f:55
subroutine chet01_aa(uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid)
CHET01_AA
Definition chet01_aa.f:124
subroutine claipd(n, a, inda, vinda)
CLAIPD
Definition claipd.f:83
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
CPOT02
Definition cpot02.f:127
subroutine chetrf_aa(uplo, n, a, lda, ipiv, work, lwork, info)
CHETRF_AA
Definition chetrf_aa.f:132
subroutine chetrs_aa(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
CHETRS_AA
Definition chetrs_aa.f:131
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103