LAPACK  3.10.1 LAPACK: Linear Algebra PACKage
cdrvpo.f
Go to the documentation of this file.
1 *> \brief \b CDRVPO
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CDRVPO( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
13 * RWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER NVAL( * )
23 * REAL RWORK( * ), S( * )
24 * COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
25 * \$ BSAV( * ), WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CDRVPO tests the driver routines CPOSV and -SVX.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is REAL
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is COMPLEX array, dimension (NMAX*NMAX)
91 *> \endverbatim
92 *>
93 *> \param[out] AFAC
94 *> \verbatim
95 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
96 *> \endverbatim
97 *>
98 *> \param[out] ASAV
99 *> \verbatim
100 *> ASAV is COMPLEX array, dimension (NMAX*NMAX)
101 *> \endverbatim
102 *>
103 *> \param[out] B
104 *> \verbatim
105 *> B is COMPLEX array, dimension (NMAX*NRHS)
106 *> \endverbatim
107 *>
108 *> \param[out] BSAV
109 *> \verbatim
110 *> BSAV is COMPLEX array, dimension (NMAX*NRHS)
111 *> \endverbatim
112 *>
113 *> \param[out] X
114 *> \verbatim
115 *> X is COMPLEX array, dimension (NMAX*NRHS)
116 *> \endverbatim
117 *>
118 *> \param[out] XACT
119 *> \verbatim
120 *> XACT is COMPLEX array, dimension (NMAX*NRHS)
121 *> \endverbatim
122 *>
123 *> \param[out] S
124 *> \verbatim
125 *> S is REAL array, dimension (NMAX)
126 *> \endverbatim
127 *>
128 *> \param[out] WORK
129 *> \verbatim
130 *> WORK is COMPLEX array, dimension
131 *> (NMAX*max(3,NRHS))
132 *> \endverbatim
133 *>
134 *> \param[out] RWORK
135 *> \verbatim
136 *> RWORK is REAL array, dimension (NMAX+2*NRHS)
137 *> \endverbatim
138 *>
139 *> \param[in] NOUT
140 *> \verbatim
141 *> NOUT is INTEGER
142 *> The unit number for output.
143 *> \endverbatim
144 *
145 * Authors:
146 * ========
147 *
148 *> \author Univ. of Tennessee
149 *> \author Univ. of California Berkeley
150 *> \author Univ. of Colorado Denver
151 *> \author NAG Ltd.
152 *
153 *> \ingroup complex_lin
154 *
155 * =====================================================================
156  SUBROUTINE cdrvpo( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
157  \$ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
158  \$ RWORK, NOUT )
159 *
160 * -- LAPACK test routine --
161 * -- LAPACK is a software package provided by Univ. of Tennessee, --
162 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163 *
164 * .. Scalar Arguments ..
165  LOGICAL TSTERR
166  INTEGER NMAX, NN, NOUT, NRHS
167  REAL THRESH
168 * ..
169 * .. Array Arguments ..
170  LOGICAL DOTYPE( * )
171  INTEGER NVAL( * )
172  REAL RWORK( * ), S( * )
173  COMPLEX A( * ), AFAC( * ), ASAV( * ), B( * ),
174  \$ bsav( * ), work( * ), x( * ), xact( * )
175 * ..
176 *
177 * =====================================================================
178 *
179 * .. Parameters ..
180  REAL ONE, ZERO
181  PARAMETER ( ONE = 1.0e+0, zero = 0.0e+0 )
182  INTEGER NTYPES
183  parameter( ntypes = 9 )
184  INTEGER NTESTS
185  parameter( ntests = 6 )
186 * ..
187 * .. Local Scalars ..
188  LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
189  CHARACTER DIST, EQUED, FACT, TYPE, UPLO, XTYPE
190  CHARACTER*3 PATH
191  INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
192  \$ izero, k, k1, kl, ku, lda, mode, n, nb, nbmin,
193  \$ nerrs, nfact, nfail, nimat, nrun, nt
194  REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
195  \$ ROLDC, SCOND
196 * ..
197 * .. Local Arrays ..
198  CHARACTER EQUEDS( 2 ), FACTS( 3 ), UPLOS( 2 )
199  INTEGER ISEED( 4 ), ISEEDY( 4 )
200  REAL RESULT( NTESTS )
201 * ..
202 * .. External Functions ..
203  LOGICAL LSAME
204  REAL CLANHE, SGET06
205  EXTERNAL lsame, clanhe, sget06
206 * ..
207 * .. External Subroutines ..
208  EXTERNAL aladhd, alaerh, alasvm, cerrvx, cget04, clacpy,
211  \$ cpotrf, cpotri, xlaenv
212 * ..
213 * .. Scalars in Common ..
214  LOGICAL LERR, OK
215  CHARACTER*32 SRNAMT
216  INTEGER INFOT, NUNIT
217 * ..
218 * .. Common blocks ..
219  COMMON / infoc / infot, nunit, ok, lerr
220  COMMON / srnamc / srnamt
221 * ..
222 * .. Intrinsic Functions ..
223  INTRINSIC cmplx, max
224 * ..
225 * .. Data statements ..
226  DATA iseedy / 1988, 1989, 1990, 1991 /
227  DATA uplos / 'U', 'L' /
228  DATA facts / 'F', 'N', 'E' /
229  DATA equeds / 'N', 'Y' /
230 * ..
231 * .. Executable Statements ..
232 *
233 * Initialize constants and the random number seed.
234 *
235  path( 1: 1 ) = 'Complex precision'
236  path( 2: 3 ) = 'PO'
237  nrun = 0
238  nfail = 0
239  nerrs = 0
240  DO 10 i = 1, 4
241  iseed( i ) = iseedy( i )
242  10 CONTINUE
243 *
244 * Test the error exits
245 *
246  IF( tsterr )
247  \$ CALL cerrvx( path, nout )
248  infot = 0
249 *
250 * Set the block size and minimum block size for testing.
251 *
252  nb = 1
253  nbmin = 2
254  CALL xlaenv( 1, nb )
255  CALL xlaenv( 2, nbmin )
256 *
257 * Do for each value of N in NVAL
258 *
259  DO 130 in = 1, nn
260  n = nval( in )
261  lda = max( n, 1 )
262  xtype = 'N'
263  nimat = ntypes
264  IF( n.LE.0 )
265  \$ nimat = 1
266 *
267  DO 120 imat = 1, nimat
268 *
269 * Do the tests only if DOTYPE( IMAT ) is true.
270 *
271  IF( .NOT.dotype( imat ) )
272  \$ GO TO 120
273 *
274 * Skip types 3, 4, or 5 if the matrix size is too small.
275 *
276  zerot = imat.GE.3 .AND. imat.LE.5
277  IF( zerot .AND. n.LT.imat-2 )
278  \$ GO TO 120
279 *
280 * Do first for UPLO = 'U', then for UPLO = 'L'
281 *
282  DO 110 iuplo = 1, 2
283  uplo = uplos( iuplo )
284 *
285 * Set up parameters with CLATB4 and generate a test matrix
286 * with CLATMS.
287 *
288  CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
289  \$ cndnum, dist )
290 *
291  srnamt = 'CLATMS'
292  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
293  \$ cndnum, anorm, kl, ku, uplo, a, lda, work,
294  \$ info )
295 *
296 * Check error code from CLATMS.
297 *
298  IF( info.NE.0 ) THEN
299  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
300  \$ -1, -1, imat, nfail, nerrs, nout )
301  GO TO 110
302  END IF
303 *
304 * For types 3-5, zero one row and column of the matrix to
305 * test that INFO is returned correctly.
306 *
307  IF( zerot ) THEN
308  IF( imat.EQ.3 ) THEN
309  izero = 1
310  ELSE IF( imat.EQ.4 ) THEN
311  izero = n
312  ELSE
313  izero = n / 2 + 1
314  END IF
315  ioff = ( izero-1 )*lda
316 *
317 * Set row and column IZERO of A to 0.
318 *
319  IF( iuplo.EQ.1 ) THEN
320  DO 20 i = 1, izero - 1
321  a( ioff+i ) = zero
322  20 CONTINUE
323  ioff = ioff + izero
324  DO 30 i = izero, n
325  a( ioff ) = zero
326  ioff = ioff + lda
327  30 CONTINUE
328  ELSE
329  ioff = izero
330  DO 40 i = 1, izero - 1
331  a( ioff ) = zero
332  ioff = ioff + lda
333  40 CONTINUE
334  ioff = ioff - izero
335  DO 50 i = izero, n
336  a( ioff+i ) = zero
337  50 CONTINUE
338  END IF
339  ELSE
340  izero = 0
341  END IF
342 *
343 * Set the imaginary part of the diagonals.
344 *
345  CALL claipd( n, a, lda+1, 0 )
346 *
347 * Save a copy of the matrix A in ASAV.
348 *
349  CALL clacpy( uplo, n, n, a, lda, asav, lda )
350 *
351  DO 100 iequed = 1, 2
352  equed = equeds( iequed )
353  IF( iequed.EQ.1 ) THEN
354  nfact = 3
355  ELSE
356  nfact = 1
357  END IF
358 *
359  DO 90 ifact = 1, nfact
360  fact = facts( ifact )
361  prefac = lsame( fact, 'F' )
362  nofact = lsame( fact, 'N' )
363  equil = lsame( fact, 'E' )
364 *
365  IF( zerot ) THEN
366  IF( prefac )
367  \$ GO TO 90
368  rcondc = zero
369 *
370  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
371 *
372 * Compute the condition number for comparison with
373 * the value returned by CPOSVX (FACT = 'N' reuses
374 * the condition number from the previous iteration
375 * with FACT = 'F').
376 *
377  CALL clacpy( uplo, n, n, asav, lda, afac, lda )
378  IF( equil .OR. iequed.GT.1 ) THEN
379 *
380 * Compute row and column scale factors to
381 * equilibrate the matrix A.
382 *
383  CALL cpoequ( n, afac, lda, s, scond, amax,
384  \$ info )
385  IF( info.EQ.0 .AND. n.GT.0 ) THEN
386  IF( iequed.GT.1 )
387  \$ scond = zero
388 *
389 * Equilibrate the matrix.
390 *
391  CALL claqhe( uplo, n, afac, lda, s, scond,
392  \$ amax, equed )
393  END IF
394  END IF
395 *
396 * Save the condition number of the
397 * non-equilibrated system for use in CGET04.
398 *
399  IF( equil )
400  \$ roldc = rcondc
401 *
402 * Compute the 1-norm of A.
403 *
404  anorm = clanhe( '1', uplo, n, afac, lda, rwork )
405 *
406 * Factor the matrix A.
407 *
408  CALL cpotrf( uplo, n, afac, lda, info )
409 *
410 * Form the inverse of A.
411 *
412  CALL clacpy( uplo, n, n, afac, lda, a, lda )
413  CALL cpotri( uplo, n, a, lda, info )
414 *
415 * Compute the 1-norm condition number of A.
416 *
417  ainvnm = clanhe( '1', uplo, n, a, lda, rwork )
418  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
419  rcondc = one
420  ELSE
421  rcondc = ( one / anorm ) / ainvnm
422  END IF
423  END IF
424 *
425 * Restore the matrix A.
426 *
427  CALL clacpy( uplo, n, n, asav, lda, a, lda )
428 *
429 * Form an exact solution and set the right hand side.
430 *
431  srnamt = 'CLARHS'
432  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
433  \$ nrhs, a, lda, xact, lda, b, lda,
434  \$ iseed, info )
435  xtype = 'C'
436  CALL clacpy( 'Full', n, nrhs, b, lda, bsav, lda )
437 *
438  IF( nofact ) THEN
439 *
440 * --- Test CPOSV ---
441 *
442 * Compute the L*L' or U'*U factorization of the
443 * matrix and solve the system.
444 *
445  CALL clacpy( uplo, n, n, a, lda, afac, lda )
446  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
447 *
448  srnamt = 'CPOSV '
449  CALL cposv( uplo, n, nrhs, afac, lda, x, lda,
450  \$ info )
451 *
452 * Check error code from CPOSV .
453 *
454  IF( info.NE.izero ) THEN
455  CALL alaerh( path, 'CPOSV ', info, izero,
456  \$ uplo, n, n, -1, -1, nrhs, imat,
457  \$ nfail, nerrs, nout )
458  GO TO 70
459  ELSE IF( info.NE.0 ) THEN
460  GO TO 70
461  END IF
462 *
463 * Reconstruct matrix from factors and compute
464 * residual.
465 *
466  CALL cpot01( uplo, n, a, lda, afac, lda, rwork,
467  \$ result( 1 ) )
468 *
469 * Compute residual of the computed solution.
470 *
471  CALL clacpy( 'Full', n, nrhs, b, lda, work,
472  \$ lda )
473  CALL cpot02( uplo, n, nrhs, a, lda, x, lda,
474  \$ work, lda, rwork, result( 2 ) )
475 *
476 * Check solution from generated exact solution.
477 *
478  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
479  \$ result( 3 ) )
480  nt = 3
481 *
482 * Print information about the tests that did not
483 * pass the threshold.
484 *
485  DO 60 k = 1, nt
486  IF( result( k ).GE.thresh ) THEN
487  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
488  \$ CALL aladhd( nout, path )
489  WRITE( nout, fmt = 9999 )'CPOSV ', uplo,
490  \$ n, imat, k, result( k )
491  nfail = nfail + 1
492  END IF
493  60 CONTINUE
494  nrun = nrun + nt
495  70 CONTINUE
496  END IF
497 *
498 * --- Test CPOSVX ---
499 *
500  IF( .NOT.prefac )
501  \$ CALL claset( uplo, n, n, cmplx( zero ),
502  \$ cmplx( zero ), afac, lda )
503  CALL claset( 'Full', n, nrhs, cmplx( zero ),
504  \$ cmplx( zero ), x, lda )
505  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
506 *
507 * Equilibrate the matrix if FACT='F' and
508 * EQUED='Y'.
509 *
510  CALL claqhe( uplo, n, a, lda, s, scond, amax,
511  \$ equed )
512  END IF
513 *
514 * Solve the system and compute the condition number
515 * and error bounds using CPOSVX.
516 *
517  srnamt = 'CPOSVX'
518  CALL cposvx( fact, uplo, n, nrhs, a, lda, afac,
519  \$ lda, equed, s, b, lda, x, lda, rcond,
520  \$ rwork, rwork( nrhs+1 ), work,
521  \$ rwork( 2*nrhs+1 ), info )
522 *
523 * Check the error code from CPOSVX.
524 *
525  IF( info.NE.izero ) THEN
526  CALL alaerh( path, 'CPOSVX', info, izero,
527  \$ fact // uplo, n, n, -1, -1, nrhs,
528  \$ imat, nfail, nerrs, nout )
529  GO TO 90
530  END IF
531 *
532  IF( info.EQ.0 ) THEN
533  IF( .NOT.prefac ) THEN
534 *
535 * Reconstruct matrix from factors and compute
536 * residual.
537 *
538  CALL cpot01( uplo, n, a, lda, afac, lda,
539  \$ rwork( 2*nrhs+1 ), result( 1 ) )
540  k1 = 1
541  ELSE
542  k1 = 2
543  END IF
544 *
545 * Compute residual of the computed solution.
546 *
547  CALL clacpy( 'Full', n, nrhs, bsav, lda, work,
548  \$ lda )
549  CALL cpot02( uplo, n, nrhs, asav, lda, x, lda,
550  \$ work, lda, rwork( 2*nrhs+1 ),
551  \$ result( 2 ) )
552 *
553 * Check solution from generated exact solution.
554 *
555  IF( nofact .OR. ( prefac .AND. lsame( equed,
556  \$ 'N' ) ) ) THEN
557  CALL cget04( n, nrhs, x, lda, xact, lda,
558  \$ rcondc, result( 3 ) )
559  ELSE
560  CALL cget04( n, nrhs, x, lda, xact, lda,
561  \$ roldc, result( 3 ) )
562  END IF
563 *
564 * Check the error bounds from iterative
565 * refinement.
566 *
567  CALL cpot05( uplo, n, nrhs, asav, lda, b, lda,
568  \$ x, lda, xact, lda, rwork,
569  \$ rwork( nrhs+1 ), result( 4 ) )
570  ELSE
571  k1 = 6
572  END IF
573 *
574 * Compare RCOND from CPOSVX with the computed value
575 * in RCONDC.
576 *
577  result( 6 ) = sget06( rcond, rcondc )
578 *
579 * Print information about the tests that did not pass
580 * the threshold.
581 *
582  DO 80 k = k1, 6
583  IF( result( k ).GE.thresh ) THEN
584  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
585  \$ CALL aladhd( nout, path )
586  IF( prefac ) THEN
587  WRITE( nout, fmt = 9997 )'CPOSVX', fact,
588  \$ uplo, n, equed, imat, k, result( k )
589  ELSE
590  WRITE( nout, fmt = 9998 )'CPOSVX', fact,
591  \$ uplo, n, imat, k, result( k )
592  END IF
593  nfail = nfail + 1
594  END IF
595  80 CONTINUE
596  nrun = nrun + 7 - k1
597  90 CONTINUE
598  100 CONTINUE
599  110 CONTINUE
600  120 CONTINUE
601  130 CONTINUE
602 *
603 * Print a summary of the results.
604 *
605  CALL alasvm( path, nout, nfail, nrun, nerrs )
606 *
607  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i1,
608  \$ ', test(', i1, ')=', g12.5 )
609  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
610  \$ ', type ', i1, ', test(', i1, ')=', g12.5 )
611  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
612  \$ ', EQUED=''', a1, ''', type ', i1, ', test(', i1, ') =',
613  \$ g12.5 )
614  RETURN
615 *
616 * End of CDRVPO
617 *
618  END
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine cpot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPOT05
Definition: cpot05.f:165
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine cdrvpo(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, NOUT)
CDRVPO
Definition: cdrvpo.f:159
subroutine claipd(N, A, INDA, VINDA)
CLAIPD
Definition: claipd.f:83
subroutine cpot01(UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID)
CPOT01
Definition: cpot01.f:106
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:127
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:55
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine claqhe(UPLO, N, A, LDA, S, SCOND, AMAX, EQUED)
CLAQHE scales a Hermitian matrix.
Definition: claqhe.f:134
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cpoequ(N, A, LDA, S, SCOND, AMAX, INFO)
CPOEQU
Definition: cpoequ.f:113
subroutine cpotrf(UPLO, N, A, LDA, INFO)
CPOTRF
Definition: cpotrf.f:107
subroutine cpotri(UPLO, N, A, LDA, INFO)
CPOTRI
Definition: cpotri.f:95
subroutine cposvx(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CPOSVX computes the solution to system of linear equations A * X = B for PO matrices
Definition: cposvx.f:306
subroutine cposv(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CPOSV computes the solution to system of linear equations A * X = B for PO matrices
Definition: cposv.f:130