LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zsysvx()

subroutine zsysvx ( character fact,
character uplo,
integer n,
integer nrhs,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldx, * ) x,
integer ldx,
double precision rcond,
double precision, dimension( * ) ferr,
double precision, dimension( * ) berr,
complex*16, dimension( * ) work,
integer lwork,
double precision, dimension( * ) rwork,
integer info )

ZSYSVX computes the solution to system of linear equations A * X = B for SY matrices

Download ZSYSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZSYSVX uses the diagonal pivoting factorization to compute the !> solution to a complex system of linear equations A * X = B, !> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS !> matrices. !> !> Error bounds on the solution and a condition estimate are also !> provided. !>
Description:
!> !> The following steps are performed: !> !> 1. If FACT = 'N', the diagonal pivoting method is used to factor A. !> The form of the factorization is !> A = U * D * U**T, if UPLO = 'U', or !> A = L * D * L**T, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, and D is symmetric and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. !> !> 2. If some D(i,i)=0, so that D is exactly singular, then the routine !> returns with INFO = i. Otherwise, the factored form of A is used !> to estimate the condition number of the matrix A. If the !> reciprocal of the condition number is less than machine precision, !> INFO = N+1 is returned as a warning, but the routine still goes on !> to solve for X and compute error bounds as described below. !> !> 3. The system of equations is solved for X using the factored form !> of A. !> !> 4. Iterative refinement is applied to improve the computed solution !> matrix and calculate error bounds and backward error estimates !> for it. !>
Parameters
[in]FACT
!> FACT is CHARACTER*1 !> Specifies whether or not the factored form of A has been !> supplied on entry. !> = 'F': On entry, AF and IPIV contain the factored form !> of A. A, AF and IPIV will not be modified. !> = 'N': The matrix A will be copied to AF and factored. !>
[in]UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
[in]N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
[in]A
!> A is COMPLEX*16 array, dimension (LDA,N) !> The symmetric matrix A. If UPLO = 'U', the leading N-by-N !> upper triangular part of A contains the upper triangular part !> of the matrix A, and the strictly lower triangular part of A !> is not referenced. If UPLO = 'L', the leading N-by-N lower !> triangular part of A contains the lower triangular part of !> the matrix A, and the strictly upper triangular part of A is !> not referenced. !>
[in]LDA
!> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !>
[in,out]AF
!> AF is COMPLEX*16 array, dimension (LDAF,N) !> If FACT = 'F', then AF is an input argument and on entry !> contains the block diagonal matrix D and the multipliers used !> to obtain the factor U or L from the factorization !> A = U*D*U**T or A = L*D*L**T as computed by ZSYTRF. !> !> If FACT = 'N', then AF is an output argument and on exit !> returns the block diagonal matrix D and the multipliers used !> to obtain the factor U or L from the factorization !> A = U*D*U**T or A = L*D*L**T. !>
[in]LDAF
!> LDAF is INTEGER !> The leading dimension of the array AF. LDAF >= max(1,N). !>
[in,out]IPIV
!> IPIV is INTEGER array, dimension (N) !> If FACT = 'F', then IPIV is an input argument and on entry !> contains details of the interchanges and the block structure !> of D, as determined by ZSYTRF. !> If IPIV(k) > 0, then rows and columns k and IPIV(k) were !> interchanged and D(k,k) is a 1-by-1 diagonal block. !> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and !> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) !> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = !> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were !> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. !> !> If FACT = 'N', then IPIV is an output argument and on exit !> contains details of the interchanges and the block structure !> of D, as determined by ZSYTRF. !>
[in]B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The N-by-NRHS right hand side matrix B. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]X
!> X is COMPLEX*16 array, dimension (LDX,NRHS) !> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. !>
[in]LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
[out]RCOND
!> RCOND is DOUBLE PRECISION !> The estimate of the reciprocal condition number of the matrix !> A. If RCOND is less than the machine precision (in !> particular, if RCOND = 0), the matrix is singular to working !> precision. This condition is indicated by a return code of !> INFO > 0. !>
[out]FERR
!> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !>
[out]BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !>
[in]LWORK
!> LWORK is INTEGER !> The length of WORK. LWORK >= max(1,2*N), and for best !> performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where !> NB is the optimal blocksize for ZSYTRF. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !>
[out]RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is !> <= N: D(i,i) is exactly zero. The factorization !> has been completed but the factor D is exactly !> singular, so the solution and error bounds could !> not be computed. RCOND = 0 is returned. !> = N+1: D is nonsingular, but RCOND is less than machine !> precision, meaning that the matrix is singular !> to working precision. Nevertheless, the !> solution and error bounds are computed because !> there are a number of situations where the !> computed solution can be more accurate than the !> value of RCOND would suggest. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 280 of file zsysvx.f.

284*
285* -- LAPACK driver routine --
286* -- LAPACK is a software package provided by Univ. of Tennessee, --
287* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
288*
289* .. Scalar Arguments ..
290 CHARACTER FACT, UPLO
291 INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS
292 DOUBLE PRECISION RCOND
293* ..
294* .. Array Arguments ..
295 INTEGER IPIV( * )
296 DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
297 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
298 $ WORK( * ), X( LDX, * )
299* ..
300*
301* =====================================================================
302*
303* .. Parameters ..
304 DOUBLE PRECISION ZERO
305 parameter( zero = 0.0d+0 )
306* ..
307* .. Local Scalars ..
308 LOGICAL LQUERY, NOFACT
309 INTEGER LWKOPT, NB
310 DOUBLE PRECISION ANORM
311* ..
312* .. External Functions ..
313 LOGICAL LSAME
314 INTEGER ILAENV
315 DOUBLE PRECISION DLAMCH, ZLANSY
316 EXTERNAL lsame, ilaenv, dlamch, zlansy
317* ..
318* .. External Subroutines ..
319 EXTERNAL xerbla, zlacpy, zsycon, zsyrfs, zsytrf,
320 $ zsytrs
321* ..
322* .. Intrinsic Functions ..
323 INTRINSIC max
324* ..
325* .. Executable Statements ..
326*
327* Test the input parameters.
328*
329 info = 0
330 nofact = lsame( fact, 'N' )
331 lquery = ( lwork.EQ.-1 )
332 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
333 info = -1
334 ELSE IF( .NOT.lsame( uplo, 'U' ) .AND.
335 $ .NOT.lsame( uplo, 'L' ) )
336 $ THEN
337 info = -2
338 ELSE IF( n.LT.0 ) THEN
339 info = -3
340 ELSE IF( nrhs.LT.0 ) THEN
341 info = -4
342 ELSE IF( lda.LT.max( 1, n ) ) THEN
343 info = -6
344 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
345 info = -8
346 ELSE IF( ldb.LT.max( 1, n ) ) THEN
347 info = -11
348 ELSE IF( ldx.LT.max( 1, n ) ) THEN
349 info = -13
350 ELSE IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
351 info = -18
352 END IF
353*
354 IF( info.EQ.0 ) THEN
355 lwkopt = max( 1, 2*n )
356 IF( nofact ) THEN
357 nb = ilaenv( 1, 'ZSYTRF', uplo, n, -1, -1, -1 )
358 lwkopt = max( lwkopt, n*nb )
359 END IF
360 work( 1 ) = lwkopt
361 END IF
362*
363 IF( info.NE.0 ) THEN
364 CALL xerbla( 'ZSYSVX', -info )
365 RETURN
366 ELSE IF( lquery ) THEN
367 RETURN
368 END IF
369*
370 IF( nofact ) THEN
371*
372* Compute the factorization A = U*D*U**T or A = L*D*L**T.
373*
374 CALL zlacpy( uplo, n, n, a, lda, af, ldaf )
375 CALL zsytrf( uplo, n, af, ldaf, ipiv, work, lwork, info )
376*
377* Return if INFO is non-zero.
378*
379 IF( info.GT.0 )THEN
380 rcond = zero
381 RETURN
382 END IF
383 END IF
384*
385* Compute the norm of the matrix A.
386*
387 anorm = zlansy( 'I', uplo, n, a, lda, rwork )
388*
389* Compute the reciprocal of the condition number of A.
390*
391 CALL zsycon( uplo, n, af, ldaf, ipiv, anorm, rcond, work,
392 $ info )
393*
394* Compute the solution vectors X.
395*
396 CALL zlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
397 CALL zsytrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
398*
399* Use iterative refinement to improve the computed solutions and
400* compute error bounds and backward error estimates for them.
401*
402 CALL zsyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x,
403 $ ldx, ferr, berr, work, rwork, info )
404*
405* Set INFO = N+1 if the matrix is singular to working precision.
406*
407 IF( rcond.LT.dlamch( 'Epsilon' ) )
408 $ info = n + 1
409*
410 work( 1 ) = lwkopt
411*
412 RETURN
413*
414* End of ZSYSVX
415*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
ZSYCON
Definition zsycon.f:123
subroutine zsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZSYRFS
Definition zsyrfs.f:191
subroutine zsytrf(uplo, n, a, lda, ipiv, work, lwork, info)
ZSYTRF
Definition zsytrf.f:180
subroutine zsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZSYTRS
Definition zsytrs.f:118
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlansy(norm, uplo, n, a, lda, work)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlansy.f:121
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: