LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zerrpo.f
Go to the documentation of this file.
1*> \brief \b ZERRPO
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZERRPO( PATH, NUNIT )
12*
13* .. Scalar Arguments ..
14* CHARACTER*3 PATH
15* INTEGER NUNIT
16* ..
17*
18*
19*> \par Purpose:
20* =============
21*>
22*> \verbatim
23*>
24*> ZERRPO tests the error exits for the COMPLEX*16 routines
25*> for Hermitian positive definite matrices.
26*> \endverbatim
27*
28* Arguments:
29* ==========
30*
31*> \param[in] PATH
32*> \verbatim
33*> PATH is CHARACTER*3
34*> The LAPACK path name for the routines to be tested.
35*> \endverbatim
36*>
37*> \param[in] NUNIT
38*> \verbatim
39*> NUNIT is INTEGER
40*> The unit number for output.
41*> \endverbatim
42*
43* Authors:
44* ========
45*
46*> \author Univ. of Tennessee
47*> \author Univ. of California Berkeley
48*> \author Univ. of Colorado Denver
49*> \author NAG Ltd.
50*
51*> \ingroup complex16_lin
52*
53* =====================================================================
54 SUBROUTINE zerrpo( PATH, NUNIT )
55*
56* -- LAPACK test routine --
57* -- LAPACK is a software package provided by Univ. of Tennessee, --
58* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
59*
60* .. Scalar Arguments ..
61 CHARACTER*3 PATH
62 INTEGER NUNIT
63* ..
64*
65* =====================================================================
66*
67* .. Parameters ..
68 INTEGER NMAX
69 parameter( nmax = 4 )
70* ..
71* .. Local Scalars ..
72 CHARACTER*2 C2
73 INTEGER I, INFO, J
74 DOUBLE PRECISION ANRM, RCOND
75* ..
76* .. Local Arrays ..
77 DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX )
78 COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
79 $ W( 2*NMAX ), X( NMAX )
80* ..
81* .. External Functions ..
82 LOGICAL LSAMEN
83 EXTERNAL lsamen
84* ..
85* .. External Subroutines ..
86 EXTERNAL alaesm, chkxer, zpbcon, zpbequ, zpbrfs, zpbtf2,
90* ..
91* .. Scalars in Common ..
92 LOGICAL LERR, OK
93 CHARACTER*32 SRNAMT
94 INTEGER INFOT, NOUT
95* ..
96* .. Common blocks ..
97 COMMON / infoc / infot, nout, ok, lerr
98 COMMON / srnamc / srnamt
99* ..
100* .. Intrinsic Functions ..
101 INTRINSIC dble, dcmplx
102* ..
103* .. Executable Statements ..
104*
105 nout = nunit
106 WRITE( nout, fmt = * )
107 c2 = path( 2: 3 )
108*
109* Set the variables to innocuous values.
110*
111 DO 20 j = 1, nmax
112 DO 10 i = 1, nmax
113 a( i, j ) = dcmplx( 1.d0 / dble( i+j ),
114 $ -1.d0 / dble( i+j ) )
115 af( i, j ) = dcmplx( 1.d0 / dble( i+j ),
116 $ -1.d0 / dble( i+j ) )
117 10 CONTINUE
118 b( j ) = 0.d0
119 r1( j ) = 0.d0
120 r2( j ) = 0.d0
121 w( j ) = 0.d0
122 x( j ) = 0.d0
123 20 CONTINUE
124 anrm = 1.d0
125 ok = .true.
126*
127* Test error exits of the routines that use the Cholesky
128* decomposition of a Hermitian positive definite matrix.
129*
130 IF( lsamen( 2, c2, 'PO' ) ) THEN
131*
132* ZPOTRF
133*
134 srnamt = 'ZPOTRF'
135 infot = 1
136 CALL zpotrf( '/', 0, a, 1, info )
137 CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
138 infot = 2
139 CALL zpotrf( 'U', -1, a, 1, info )
140 CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
141 infot = 4
142 CALL zpotrf( 'U', 2, a, 1, info )
143 CALL chkxer( 'ZPOTRF', infot, nout, lerr, ok )
144*
145* ZPOTF2
146*
147 srnamt = 'ZPOTF2'
148 infot = 1
149 CALL zpotf2( '/', 0, a, 1, info )
150 CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
151 infot = 2
152 CALL zpotf2( 'U', -1, a, 1, info )
153 CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
154 infot = 4
155 CALL zpotf2( 'U', 2, a, 1, info )
156 CALL chkxer( 'ZPOTF2', infot, nout, lerr, ok )
157*
158* ZPOTRI
159*
160 srnamt = 'ZPOTRI'
161 infot = 1
162 CALL zpotri( '/', 0, a, 1, info )
163 CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
164 infot = 2
165 CALL zpotri( 'U', -1, a, 1, info )
166 CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
167 infot = 4
168 CALL zpotri( 'U', 2, a, 1, info )
169 CALL chkxer( 'ZPOTRI', infot, nout, lerr, ok )
170*
171* ZPOTRS
172*
173 srnamt = 'ZPOTRS'
174 infot = 1
175 CALL zpotrs( '/', 0, 0, a, 1, b, 1, info )
176 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
177 infot = 2
178 CALL zpotrs( 'U', -1, 0, a, 1, b, 1, info )
179 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
180 infot = 3
181 CALL zpotrs( 'U', 0, -1, a, 1, b, 1, info )
182 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
183 infot = 5
184 CALL zpotrs( 'U', 2, 1, a, 1, b, 2, info )
185 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
186 infot = 7
187 CALL zpotrs( 'U', 2, 1, a, 2, b, 1, info )
188 CALL chkxer( 'ZPOTRS', infot, nout, lerr, ok )
189*
190* ZPORFS
191*
192 srnamt = 'ZPORFS'
193 infot = 1
194 CALL zporfs( '/', 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
195 $ info )
196 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
197 infot = 2
198 CALL zporfs( 'U', -1, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
199 $ info )
200 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
201 infot = 3
202 CALL zporfs( 'U', 0, -1, a, 1, af, 1, b, 1, x, 1, r1, r2, w, r,
203 $ info )
204 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
205 infot = 5
206 CALL zporfs( 'U', 2, 1, a, 1, af, 2, b, 2, x, 2, r1, r2, w, r,
207 $ info )
208 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
209 infot = 7
210 CALL zporfs( 'U', 2, 1, a, 2, af, 1, b, 2, x, 2, r1, r2, w, r,
211 $ info )
212 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
213 infot = 9
214 CALL zporfs( 'U', 2, 1, a, 2, af, 2, b, 1, x, 2, r1, r2, w, r,
215 $ info )
216 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
217 infot = 11
218 CALL zporfs( 'U', 2, 1, a, 2, af, 2, b, 2, x, 1, r1, r2, w, r,
219 $ info )
220 CALL chkxer( 'ZPORFS', infot, nout, lerr, ok )
221*
222* ZPOCON
223*
224 srnamt = 'ZPOCON'
225 infot = 1
226 CALL zpocon( '/', 0, a, 1, anrm, rcond, w, r, info )
227 CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
228 infot = 2
229 CALL zpocon( 'U', -1, a, 1, anrm, rcond, w, r, info )
230 CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
231 infot = 4
232 CALL zpocon( 'U', 2, a, 1, anrm, rcond, w, r, info )
233 CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
234 infot = 5
235 CALL zpocon( 'U', 1, a, 1, -anrm, rcond, w, r, info )
236 CALL chkxer( 'ZPOCON', infot, nout, lerr, ok )
237*
238* ZPOEQU
239*
240 srnamt = 'ZPOEQU'
241 infot = 1
242 CALL zpoequ( -1, a, 1, r1, rcond, anrm, info )
243 CALL chkxer( 'ZPOEQU', infot, nout, lerr, ok )
244 infot = 3
245 CALL zpoequ( 2, a, 1, r1, rcond, anrm, info )
246 CALL chkxer( 'ZPOEQU', infot, nout, lerr, ok )
247*
248* Test error exits of the routines that use the Cholesky
249* decomposition of a Hermitian positive definite packed matrix.
250*
251 ELSE IF( lsamen( 2, c2, 'PP' ) ) THEN
252*
253* ZPPTRF
254*
255 srnamt = 'ZPPTRF'
256 infot = 1
257 CALL zpptrf( '/', 0, a, info )
258 CALL chkxer( 'ZPPTRF', infot, nout, lerr, ok )
259 infot = 2
260 CALL zpptrf( 'U', -1, a, info )
261 CALL chkxer( 'ZPPTRF', infot, nout, lerr, ok )
262*
263* ZPPTRI
264*
265 srnamt = 'ZPPTRI'
266 infot = 1
267 CALL zpptri( '/', 0, a, info )
268 CALL chkxer( 'ZPPTRI', infot, nout, lerr, ok )
269 infot = 2
270 CALL zpptri( 'U', -1, a, info )
271 CALL chkxer( 'ZPPTRI', infot, nout, lerr, ok )
272*
273* ZPPTRS
274*
275 srnamt = 'ZPPTRS'
276 infot = 1
277 CALL zpptrs( '/', 0, 0, a, b, 1, info )
278 CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
279 infot = 2
280 CALL zpptrs( 'U', -1, 0, a, b, 1, info )
281 CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
282 infot = 3
283 CALL zpptrs( 'U', 0, -1, a, b, 1, info )
284 CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
285 infot = 6
286 CALL zpptrs( 'U', 2, 1, a, b, 1, info )
287 CALL chkxer( 'ZPPTRS', infot, nout, lerr, ok )
288*
289* ZPPRFS
290*
291 srnamt = 'ZPPRFS'
292 infot = 1
293 CALL zpprfs( '/', 0, 0, a, af, b, 1, x, 1, r1, r2, w, r, info )
294 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
295 infot = 2
296 CALL zpprfs( 'U', -1, 0, a, af, b, 1, x, 1, r1, r2, w, r,
297 $ info )
298 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
299 infot = 3
300 CALL zpprfs( 'U', 0, -1, a, af, b, 1, x, 1, r1, r2, w, r,
301 $ info )
302 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
303 infot = 7
304 CALL zpprfs( 'U', 2, 1, a, af, b, 1, x, 2, r1, r2, w, r, info )
305 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
306 infot = 9
307 CALL zpprfs( 'U', 2, 1, a, af, b, 2, x, 1, r1, r2, w, r, info )
308 CALL chkxer( 'ZPPRFS', infot, nout, lerr, ok )
309*
310* ZPPCON
311*
312 srnamt = 'ZPPCON'
313 infot = 1
314 CALL zppcon( '/', 0, a, anrm, rcond, w, r, info )
315 CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
316 infot = 2
317 CALL zppcon( 'U', -1, a, anrm, rcond, w, r, info )
318 CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
319 infot = 4
320 CALL zppcon( 'U', 1, a, -anrm, rcond, w, r, info )
321 CALL chkxer( 'ZPPCON', infot, nout, lerr, ok )
322*
323* ZPPEQU
324*
325 srnamt = 'ZPPEQU'
326 infot = 1
327 CALL zppequ( '/', 0, a, r1, rcond, anrm, info )
328 CALL chkxer( 'ZPPEQU', infot, nout, lerr, ok )
329 infot = 2
330 CALL zppequ( 'U', -1, a, r1, rcond, anrm, info )
331 CALL chkxer( 'ZPPEQU', infot, nout, lerr, ok )
332*
333* Test error exits of the routines that use the Cholesky
334* decomposition of a Hermitian positive definite band matrix.
335*
336 ELSE IF( lsamen( 2, c2, 'PB' ) ) THEN
337*
338* ZPBTRF
339*
340 srnamt = 'ZPBTRF'
341 infot = 1
342 CALL zpbtrf( '/', 0, 0, a, 1, info )
343 CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
344 infot = 2
345 CALL zpbtrf( 'U', -1, 0, a, 1, info )
346 CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
347 infot = 3
348 CALL zpbtrf( 'U', 1, -1, a, 1, info )
349 CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
350 infot = 5
351 CALL zpbtrf( 'U', 2, 1, a, 1, info )
352 CALL chkxer( 'ZPBTRF', infot, nout, lerr, ok )
353*
354* ZPBTF2
355*
356 srnamt = 'ZPBTF2'
357 infot = 1
358 CALL zpbtf2( '/', 0, 0, a, 1, info )
359 CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
360 infot = 2
361 CALL zpbtf2( 'U', -1, 0, a, 1, info )
362 CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
363 infot = 3
364 CALL zpbtf2( 'U', 1, -1, a, 1, info )
365 CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
366 infot = 5
367 CALL zpbtf2( 'U', 2, 1, a, 1, info )
368 CALL chkxer( 'ZPBTF2', infot, nout, lerr, ok )
369*
370* ZPBTRS
371*
372 srnamt = 'ZPBTRS'
373 infot = 1
374 CALL zpbtrs( '/', 0, 0, 0, a, 1, b, 1, info )
375 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
376 infot = 2
377 CALL zpbtrs( 'U', -1, 0, 0, a, 1, b, 1, info )
378 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
379 infot = 3
380 CALL zpbtrs( 'U', 1, -1, 0, a, 1, b, 1, info )
381 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
382 infot = 4
383 CALL zpbtrs( 'U', 0, 0, -1, a, 1, b, 1, info )
384 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
385 infot = 6
386 CALL zpbtrs( 'U', 2, 1, 1, a, 1, b, 1, info )
387 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
388 infot = 8
389 CALL zpbtrs( 'U', 2, 0, 1, a, 1, b, 1, info )
390 CALL chkxer( 'ZPBTRS', infot, nout, lerr, ok )
391*
392* ZPBRFS
393*
394 srnamt = 'ZPBRFS'
395 infot = 1
396 CALL zpbrfs( '/', 0, 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
397 $ r, info )
398 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
399 infot = 2
400 CALL zpbrfs( 'U', -1, 0, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
401 $ r, info )
402 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
403 infot = 3
404 CALL zpbrfs( 'U', 1, -1, 0, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
405 $ r, info )
406 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
407 infot = 4
408 CALL zpbrfs( 'U', 0, 0, -1, a, 1, af, 1, b, 1, x, 1, r1, r2, w,
409 $ r, info )
410 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
411 infot = 6
412 CALL zpbrfs( 'U', 2, 1, 1, a, 1, af, 2, b, 2, x, 2, r1, r2, w,
413 $ r, info )
414 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
415 infot = 8
416 CALL zpbrfs( 'U', 2, 1, 1, a, 2, af, 1, b, 2, x, 2, r1, r2, w,
417 $ r, info )
418 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
419 infot = 10
420 CALL zpbrfs( 'U', 2, 0, 1, a, 1, af, 1, b, 1, x, 2, r1, r2, w,
421 $ r, info )
422 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
423 infot = 12
424 CALL zpbrfs( 'U', 2, 0, 1, a, 1, af, 1, b, 2, x, 1, r1, r2, w,
425 $ r, info )
426 CALL chkxer( 'ZPBRFS', infot, nout, lerr, ok )
427*
428* ZPBCON
429*
430 srnamt = 'ZPBCON'
431 infot = 1
432 CALL zpbcon( '/', 0, 0, a, 1, anrm, rcond, w, r, info )
433 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
434 infot = 2
435 CALL zpbcon( 'U', -1, 0, a, 1, anrm, rcond, w, r, info )
436 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
437 infot = 3
438 CALL zpbcon( 'U', 1, -1, a, 1, anrm, rcond, w, r, info )
439 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
440 infot = 5
441 CALL zpbcon( 'U', 2, 1, a, 1, anrm, rcond, w, r, info )
442 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
443 infot = 6
444 CALL zpbcon( 'U', 1, 0, a, 1, -anrm, rcond, w, r, info )
445 CALL chkxer( 'ZPBCON', infot, nout, lerr, ok )
446*
447* ZPBEQU
448*
449 srnamt = 'ZPBEQU'
450 infot = 1
451 CALL zpbequ( '/', 0, 0, a, 1, r1, rcond, anrm, info )
452 CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
453 infot = 2
454 CALL zpbequ( 'U', -1, 0, a, 1, r1, rcond, anrm, info )
455 CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
456 infot = 3
457 CALL zpbequ( 'U', 1, -1, a, 1, r1, rcond, anrm, info )
458 CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
459 infot = 5
460 CALL zpbequ( 'U', 2, 1, a, 1, r1, rcond, anrm, info )
461 CALL chkxer( 'ZPBEQU', infot, nout, lerr, ok )
462 END IF
463*
464* Print a summary line.
465*
466 CALL alaesm( path, ok, nout )
467*
468 RETURN
469*
470* End of ZERRPO
471*
472 END
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
subroutine zpbcon(uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)
ZPBCON
Definition zpbcon.f:131
subroutine zpbequ(uplo, n, kd, ab, ldab, s, scond, amax, info)
ZPBEQU
Definition zpbequ.f:129
subroutine zpbrfs(uplo, n, kd, nrhs, ab, ldab, afb, ldafb, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZPBRFS
Definition zpbrfs.f:187
subroutine zpbtf2(uplo, n, kd, ab, ldab, info)
ZPBTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite band matrix (un...
Definition zpbtf2.f:140
subroutine zpbtrf(uplo, n, kd, ab, ldab, info)
ZPBTRF
Definition zpbtrf.f:140
subroutine zpbtrs(uplo, n, kd, nrhs, ab, ldab, b, ldb, info)
ZPBTRS
Definition zpbtrs.f:119
subroutine zpocon(uplo, n, a, lda, anorm, rcond, work, rwork, info)
ZPOCON
Definition zpocon.f:119
subroutine zpoequ(n, a, lda, s, scond, amax, info)
ZPOEQU
Definition zpoequ.f:111
subroutine zporfs(uplo, n, nrhs, a, lda, af, ldaf, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZPORFS
Definition zporfs.f:181
subroutine zpotf2(uplo, n, a, lda, info)
ZPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (unblock...
Definition zpotf2.f:107
subroutine zpotrf(uplo, n, a, lda, info)
ZPOTRF
Definition zpotrf.f:105
subroutine zpotri(uplo, n, a, lda, info)
ZPOTRI
Definition zpotri.f:93
subroutine zpotrs(uplo, n, nrhs, a, lda, b, ldb, info)
ZPOTRS
Definition zpotrs.f:108
subroutine zppcon(uplo, n, ap, anorm, rcond, work, rwork, info)
ZPPCON
Definition zppcon.f:117
subroutine zppequ(uplo, n, ap, s, scond, amax, info)
ZPPEQU
Definition zppequ.f:115
subroutine zpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZPPRFS
Definition zpprfs.f:170
subroutine zpptrf(uplo, n, ap, info)
ZPPTRF
Definition zpptrf.f:117
subroutine zpptri(uplo, n, ap, info)
ZPPTRI
Definition zpptri.f:91
subroutine zpptrs(uplo, n, nrhs, ap, b, ldb, info)
ZPPTRS
Definition zpptrs.f:106
subroutine zerrpo(path, nunit)
ZERRPO
Definition zerrpo.f:55