LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zppequ | ( | character | uplo, |
integer | n, | ||
complex*16, dimension( * ) | ap, | ||
double precision, dimension( * ) | s, | ||
double precision | scond, | ||
double precision | amax, | ||
integer | info ) |
ZPPEQU
Download ZPPEQU + dependencies [TGZ] [ZIP] [TXT]
!> !> ZPPEQU computes row and column scalings intended to equilibrate a !> Hermitian positive definite matrix A in packed storage and reduce !> its condition number (with respect to the two-norm). S contains the !> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix !> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal. !> This choice of S puts the condition number of B within a factor N of !> the smallest possible condition number over all possible diagonal !> scalings. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | AP | !> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the Hermitian matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> |
[out] | S | !> S is DOUBLE PRECISION array, dimension (N) !> If INFO = 0, S contains the scale factors for A. !> |
[out] | SCOND | !> SCOND is DOUBLE PRECISION !> If INFO = 0, S contains the ratio of the smallest S(i) to !> the largest S(i). If SCOND >= 0.1 and AMAX is neither too !> large nor too small, it is not worth scaling by S. !> |
[out] | AMAX | !> AMAX is DOUBLE PRECISION !> Absolute value of largest matrix element. If AMAX is very !> close to overflow or very close to underflow, the matrix !> should be scaled. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element is nonpositive. !> |
Definition at line 114 of file zppequ.f.