LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
cdrvhe_aa.f
Go to the documentation of this file.
1 *> \brief \b CDRVHE_AA
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CDRVHE_AA( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
13 * NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NVAL( * )
23 * REAL RWORK( * )
24 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CDRVHE_AA tests the driver routine CHESV_AA.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is REAL
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is COMPLEX array, dimension (NMAX*NMAX)
91 *> \endverbatim
92 *>
93 *> \param[out] AFAC
94 *> \verbatim
95 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
96 *> \endverbatim
97 *>
98 *> \param[out] AINV
99 *> \verbatim
100 *> AINV is COMPLEX array, dimension (NMAX*NMAX)
101 *> \endverbatim
102 *>
103 *> \param[out] B
104 *> \verbatim
105 *> B is COMPLEX array, dimension (NMAX*NRHS)
106 *> \endverbatim
107 *>
108 *> \param[out] X
109 *> \verbatim
110 *> X is COMPLEX array, dimension (NMAX*NRHS)
111 *> \endverbatim
112 *>
113 *> \param[out] XACT
114 *> \verbatim
115 *> XACT is COMPLEX array, dimension (NMAX*NRHS)
116 *> \endverbatim
117 *>
118 *> \param[out] WORK
119 *> \verbatim
120 *> WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))
121 *> \endverbatim
122 *>
123 *> \param[out] RWORK
124 *> \verbatim
125 *> RWORK is REAL array, dimension (NMAX+2*NRHS)
126 *> \endverbatim
127 *>
128 *> \param[out] IWORK
129 *> \verbatim
130 *> IWORK is INTEGER array, dimension (NMAX)
131 *> \endverbatim
132 *>
133 *> \param[in] NOUT
134 *> \verbatim
135 *> NOUT is INTEGER
136 *> The unit number for output.
137 *> \endverbatim
138 *
139 * Authors:
140 * ========
141 *
142 *> \author Univ. of Tennessee
143 *> \author Univ. of California Berkeley
144 *> \author Univ. of Colorado Denver
145 *> \author NAG Ltd.
146 *
147 *> \ingroup complex_lin
148 *
149 * =====================================================================
150  SUBROUTINE cdrvhe_aa( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
151  $ NMAX, A, AFAC, AINV, B, X, XACT, WORK,
152  $ RWORK, IWORK, NOUT )
153 *
154 * -- LAPACK test routine --
155 * -- LAPACK is a software package provided by Univ. of Tennessee, --
156 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157 *
158 * .. Scalar Arguments ..
159  LOGICAL TSTERR
160  INTEGER NMAX, NN, NOUT, NRHS
161  REAL THRESH
162 * ..
163 * .. Array Arguments ..
164  LOGICAL DOTYPE( * )
165  INTEGER IWORK( * ), NVAL( * )
166  REAL RWORK( * )
167  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
168  $ work( * ), x( * ), xact( * )
169 * ..
170 *
171 * =====================================================================
172 *
173 * .. Parameters ..
174  REAL ONE, ZERO
175  PARAMETER ( ONE = 1.0e+0, zero = 0.0e+0 )
176  INTEGER NTYPES, NTESTS
177  parameter( ntypes = 10, ntests = 3 )
178  INTEGER NFACT
179  parameter( nfact = 2 )
180 * ..
181 * .. Local Scalars ..
182  LOGICAL ZEROT
183  CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
184  CHARACTER*3 MATPATH, PATH
185  INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
186  $ izero, j, k, kl, ku, lda, lwork, mode, n,
187  $ nb, nbmin, nerrs, nfail, nimat, nrun, nt
188  REAL ANORM, CNDNUM
189 * ..
190 * .. Local Arrays ..
191  CHARACTER FACTS( NFACT ), UPLOS( 2 )
192  INTEGER ISEED( 4 ), ISEEDY( 4 )
193  REAL RESULT( NTESTS )
194 * ..
195 * .. External Functions ..
196  REAL CLANHE, SGET06
197  EXTERNAL CLANHE, SGET06
198 * ..
199 * .. External Subroutines ..
200  EXTERNAL aladhd, alaerh, alasvm, xlaenv, cerrvx,
203  $ chetrf_aa
204 * ..
205 * .. Scalars in Common ..
206  LOGICAL LERR, OK
207  CHARACTER*32 SRNAMT
208  INTEGER INFOT, NUNIT
209 * ..
210 * .. Common blocks ..
211  COMMON / infoc / infot, nunit, ok, lerr
212  COMMON / srnamc / srnamt
213 * ..
214 * .. Intrinsic Functions ..
215  INTRINSIC cmplx, max, min
216 * ..
217 * .. Data statements ..
218  DATA iseedy / 1988, 1989, 1990, 1991 /
219  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
220 * ..
221 * .. Executable Statements ..
222 *
223 * Initialize constants and the random number seed.
224 *
225 * Test path
226 *
227  path( 1: 1 ) = 'Complex precision'
228  path( 2: 3 ) = 'HA'
229 *
230 * Path to generate matrices
231 *
232  matpath( 1: 1 ) = 'Complex precision'
233  matpath( 2: 3 ) = 'HE'
234 *
235  nrun = 0
236  nfail = 0
237  nerrs = 0
238  DO 10 i = 1, 4
239  iseed( i ) = iseedy( i )
240  10 CONTINUE
241 *
242 * Test the error exits
243 *
244  IF( tsterr )
245  $ CALL cerrvx( path, nout )
246  infot = 0
247 *
248 * Set the block size and minimum block size for testing.
249 *
250  nb = 1
251  nbmin = 2
252  CALL xlaenv( 1, nb )
253  CALL xlaenv( 2, nbmin )
254 *
255 * Do for each value of N in NVAL
256 *
257  DO 180 in = 1, nn
258  n = nval( in )
259  lwork = max( 3*n-2, n*(1+nb) )
260  lwork = max( lwork, 1 )
261  lda = max( n, 1 )
262  xtype = 'N'
263  nimat = ntypes
264  IF( n.LE.0 )
265  $ nimat = 1
266 *
267  DO 170 imat = 1, nimat
268 *
269 * Do the tests only if DOTYPE( IMAT ) is true.
270 *
271  IF( .NOT.dotype( imat ) )
272  $ GO TO 170
273 *
274 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
275 *
276  zerot = imat.GE.3 .AND. imat.LE.6
277  IF( zerot .AND. n.LT.imat-2 )
278  $ GO TO 170
279 *
280 * Do first for UPLO = 'U', then for UPLO = 'L'
281 *
282  DO 160 iuplo = 1, 2
283  uplo = uplos( iuplo )
284 *
285 * Begin generate the test matrix A.
286 *
287 * Set up parameters with CLATB4 for the matrix generator
288 * based on the type of matrix to be generated.
289 *
290  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
291  $ mode, cndnum, dist )
292 *
293 * Generate a matrix with CLATMS.
294 *
295  srnamt = 'CLATMS'
296  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
297  $ cndnum, anorm, kl, ku, uplo, a, lda,
298  $ work, info )
299 *
300 * Check error code from CLATMS and handle error.
301 *
302  IF( info.NE.0 ) THEN
303  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
304  $ -1, -1, -1, imat, nfail, nerrs, nout )
305  GO TO 160
306  END IF
307 *
308 * For types 3-6, zero one or more rows and columns of
309 * the matrix to test that INFO is returned correctly.
310 *
311  IF( zerot ) THEN
312  IF( imat.EQ.3 ) THEN
313  izero = 1
314  ELSE IF( imat.EQ.4 ) THEN
315  izero = n
316  ELSE
317  izero = n / 2 + 1
318  END IF
319 *
320  IF( imat.LT.6 ) THEN
321 *
322 * Set row and column IZERO to zero.
323 *
324  IF( iuplo.EQ.1 ) THEN
325  ioff = ( izero-1 )*lda
326  DO 20 i = 1, izero - 1
327  a( ioff+i ) = zero
328  20 CONTINUE
329  ioff = ioff + izero
330  DO 30 i = izero, n
331  a( ioff ) = zero
332  ioff = ioff + lda
333  30 CONTINUE
334  ELSE
335  ioff = izero
336  DO 40 i = 1, izero - 1
337  a( ioff ) = zero
338  ioff = ioff + lda
339  40 CONTINUE
340  ioff = ioff - izero
341  DO 50 i = izero, n
342  a( ioff+i ) = zero
343  50 CONTINUE
344  END IF
345  ELSE
346  ioff = 0
347  IF( iuplo.EQ.1 ) THEN
348 *
349 * Set the first IZERO rows and columns to zero.
350 *
351  DO 70 j = 1, n
352  i2 = min( j, izero )
353  DO 60 i = 1, i2
354  a( ioff+i ) = zero
355  60 CONTINUE
356  ioff = ioff + lda
357  70 CONTINUE
358  izero = 1
359  ELSE
360 *
361 * Set the first IZERO rows and columns to zero.
362 *
363  ioff = 0
364  DO 90 j = 1, n
365  i1 = max( j, izero )
366  DO 80 i = i1, n
367  a( ioff+i ) = zero
368  80 CONTINUE
369  ioff = ioff + lda
370  90 CONTINUE
371  END IF
372  END IF
373  ELSE
374  izero = 0
375  END IF
376 *
377 * End generate the test matrix A.
378 *
379 *
380  DO 150 ifact = 1, nfact
381 *
382 * Do first for FACT = 'F', then for other values.
383 *
384  fact = facts( ifact )
385 *
386 * Form an exact solution and set the right hand side.
387 *
388  srnamt = 'CLARHS'
389  CALL clarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
390  $ nrhs, a, lda, xact, lda, b, lda, iseed,
391  $ info )
392  xtype = 'C'
393 *
394 * --- Test CHESV_AA ---
395 *
396  IF( ifact.EQ.2 ) THEN
397  CALL clacpy( uplo, n, n, a, lda, afac, lda )
398  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
399 *
400 * Factor the matrix and solve the system using CHESV_AA.
401 *
402  srnamt = 'CHESV_AA '
403  CALL chesv_aa( uplo, n, nrhs, afac, lda, iwork,
404  $ x, lda, work, lwork, info )
405 *
406 * Adjust the expected value of INFO to account for
407 * pivoting.
408 *
409  IF( izero.GT.0 ) THEN
410  j = 1
411  k = izero
412  100 CONTINUE
413  IF( j.EQ.k ) THEN
414  k = iwork( j )
415  ELSE IF( iwork( j ).EQ.k ) THEN
416  k = j
417  END IF
418  IF( j.LT.k ) THEN
419  j = j + 1
420  GO TO 100
421  END IF
422  ELSE
423  k = 0
424  END IF
425 *
426 * Check error code from CHESV_AA .
427 *
428  IF( info.NE.k ) THEN
429  CALL alaerh( path, 'CHESV_AA', info, k,
430  $ uplo, n, n, -1, -1, nrhs,
431  $ imat, nfail, nerrs, nout )
432  GO TO 120
433  ELSE IF( info.NE.0 ) THEN
434  GO TO 120
435  END IF
436 *
437 * Reconstruct matrix from factors and compute
438 * residual.
439 *
440  CALL chet01_aa( uplo, n, a, lda, afac, lda,
441  $ iwork, ainv, lda, rwork,
442  $ result( 1 ) )
443 *
444 * Compute residual of the computed solution.
445 *
446  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
447  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
448  $ lda, rwork, result( 2 ) )
449  nt = 2
450 *
451 * Print information about the tests that did not pass
452 * the threshold.
453 *
454  DO 110 k = 1, nt
455  IF( result( k ).GE.thresh ) THEN
456  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
457  $ CALL aladhd( nout, path )
458  WRITE( nout, fmt = 9999 )'CHESV_AA ',
459  $ uplo, n, imat, k, result( k )
460  nfail = nfail + 1
461  END IF
462  110 CONTINUE
463  nrun = nrun + nt
464  120 CONTINUE
465  END IF
466 *
467  150 CONTINUE
468 *
469  160 CONTINUE
470  170 CONTINUE
471  180 CONTINUE
472 *
473 * Print a summary of the results.
474 *
475  CALL alasvm( path, nout, nfail, nrun, nerrs )
476 *
477  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
478  $ ', test ', i2, ', ratio =', g12.5 )
479  RETURN
480 *
481 * End of CDRVHE_AA
482 *
483  END
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine chet01_aa(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CHET01_AA
Definition: chet01_aa.f:124
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:127
subroutine cdrvhe_aa(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
CDRVHE_AA
Definition: cdrvhe_aa.f:153
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:55
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine chetrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF_AA
Definition: chetrf_aa.f:132
subroutine chesv_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CHESV_AA computes the solution to system of linear equations A * X = B for HE matrices
Definition: chesv_aa.f:162
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103