LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsbt21()

subroutine dsbt21 ( character uplo,
integer n,
integer ka,
integer ks,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) d,
double precision, dimension( * ) e,
double precision, dimension( ldu, * ) u,
integer ldu,
double precision, dimension( * ) work,
double precision, dimension( 2 ) result )

DSBT21

Purpose:
!>
!> DSBT21  generally checks a decomposition of the form
!>
!>         A = U S U**T
!>
!> where **T means transpose, A is symmetric banded, U is
!> orthogonal, and S is diagonal (if KS=0) or symmetric
!> tridiagonal (if KS=1).
!>
!> Specifically:
!>
!>         RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
!>         RESULT(2) = | I - U U**T | / ( n ulp )
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER
!>          If UPLO='U', the upper triangle of A and V will be used and
!>          the (strictly) lower triangle will not be referenced.
!>          If UPLO='L', the lower triangle of A and V will be used and
!>          the (strictly) upper triangle will not be referenced.
!> 
[in]N
!>          N is INTEGER
!>          The size of the matrix.  If it is zero, DSBT21 does nothing.
!>          It must be at least zero.
!> 
[in]KA
!>          KA is INTEGER
!>          The bandwidth of the matrix A.  It must be at least zero.  If
!>          it is larger than N-1, then max( 0, N-1 ) will be used.
!> 
[in]KS
!>          KS is INTEGER
!>          The bandwidth of the matrix S.  It may only be zero or one.
!>          If zero, then S is diagonal, and E is not referenced.  If
!>          one, then S is symmetric tri-diagonal.
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          The original (unfactored) matrix.  It is assumed to be
!>          symmetric, and only the upper (UPLO='U') or only the lower
!>          (UPLO='L') will be referenced.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of A.  It must be at least 1
!>          and at least min( KA, N-1 ).
!> 
[in]D
!>          D is DOUBLE PRECISION array, dimension (N)
!>          The diagonal of the (symmetric tri-) diagonal matrix S.
!> 
[in]E
!>          E is DOUBLE PRECISION array, dimension (N-1)
!>          The off-diagonal of the (symmetric tri-) diagonal matrix S.
!>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
!>          (3,2) element, etc.
!>          Not referenced if KS=0.
!> 
[in]U
!>          U is DOUBLE PRECISION array, dimension (LDU, N)
!>          The orthogonal matrix in the decomposition, expressed as a
!>          dense matrix (i.e., not as a product of Householder
!>          transformations, Givens transformations, etc.)
!> 
[in]LDU
!>          LDU is INTEGER
!>          The leading dimension of U.  LDU must be at least N and
!>          at least 1.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (N**2+N)
!> 
[out]RESULT
!>          RESULT is DOUBLE PRECISION array, dimension (2)
!>          The values computed by the two tests described above.  The
!>          values are currently limited to 1/ulp, to avoid overflow.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 145 of file dsbt21.f.

147*
148* -- LAPACK test routine --
149* -- LAPACK is a software package provided by Univ. of Tennessee, --
150* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*
152* .. Scalar Arguments ..
153 CHARACTER UPLO
154 INTEGER KA, KS, LDA, LDU, N
155* ..
156* .. Array Arguments ..
157 DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
158 $ U( LDU, * ), WORK( * )
159* ..
160*
161* =====================================================================
162*
163* .. Parameters ..
164 DOUBLE PRECISION ZERO, ONE
165 parameter( zero = 0.0d0, one = 1.0d0 )
166* ..
167* .. Local Scalars ..
168 LOGICAL LOWER
169 CHARACTER CUPLO
170 INTEGER IKA, J, JC, JR, LW
171 DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
172* ..
173* .. External Functions ..
174 LOGICAL LSAME
175 DOUBLE PRECISION DLAMCH, DLANGE, DLANSB, DLANSP
176 EXTERNAL lsame, dlamch, dlange, dlansb, dlansp
177* ..
178* .. External Subroutines ..
179 EXTERNAL dgemm, dspr, dspr2
180* ..
181* .. Intrinsic Functions ..
182 INTRINSIC dble, max, min
183* ..
184* .. Executable Statements ..
185*
186* Constants
187*
188 result( 1 ) = zero
189 result( 2 ) = zero
190 IF( n.LE.0 )
191 $ RETURN
192*
193 ika = max( 0, min( n-1, ka ) )
194 lw = ( n*( n+1 ) ) / 2
195*
196 IF( lsame( uplo, 'U' ) ) THEN
197 lower = .false.
198 cuplo = 'U'
199 ELSE
200 lower = .true.
201 cuplo = 'L'
202 END IF
203*
204 unfl = dlamch( 'Safe minimum' )
205 ulp = dlamch( 'Epsilon' )*dlamch( 'Base' )
206*
207* Some Error Checks
208*
209* Do Test 1
210*
211* Norm of A:
212*
213 anorm = max( dlansb( '1', cuplo, n, ika, a, lda, work ), unfl )
214*
215* Compute error matrix: Error = A - U S U**T
216*
217* Copy A from SB to SP storage format.
218*
219 j = 0
220 DO 50 jc = 1, n
221 IF( lower ) THEN
222 DO 10 jr = 1, min( ika+1, n+1-jc )
223 j = j + 1
224 work( j ) = a( jr, jc )
225 10 CONTINUE
226 DO 20 jr = ika + 2, n + 1 - jc
227 j = j + 1
228 work( j ) = zero
229 20 CONTINUE
230 ELSE
231 DO 30 jr = ika + 2, jc
232 j = j + 1
233 work( j ) = zero
234 30 CONTINUE
235 DO 40 jr = min( ika, jc-1 ), 0, -1
236 j = j + 1
237 work( j ) = a( ika+1-jr, jc )
238 40 CONTINUE
239 END IF
240 50 CONTINUE
241*
242 DO 60 j = 1, n
243 CALL dspr( cuplo, n, -d( j ), u( 1, j ), 1, work )
244 60 CONTINUE
245*
246 IF( n.GT.1 .AND. ks.EQ.1 ) THEN
247 DO 70 j = 1, n - 1
248 CALL dspr2( cuplo, n, -e( j ), u( 1, j ), 1, u( 1, j+1 ), 1,
249 $ work )
250 70 CONTINUE
251 END IF
252 wnorm = dlansp( '1', cuplo, n, work, work( lw+1 ) )
253*
254 IF( anorm.GT.wnorm ) THEN
255 result( 1 ) = ( wnorm / anorm ) / ( n*ulp )
256 ELSE
257 IF( anorm.LT.one ) THEN
258 result( 1 ) = ( min( wnorm, n*anorm ) / anorm ) / ( n*ulp )
259 ELSE
260 result( 1 ) = min( wnorm / anorm, dble( n ) ) / ( n*ulp )
261 END IF
262 END IF
263*
264* Do Test 2
265*
266* Compute U U**T - I
267*
268 CALL dgemm( 'N', 'C', n, n, n, one, u, ldu, u, ldu, zero, work,
269 $ n )
270*
271 DO 80 j = 1, n
272 work( ( n+1 )*( j-1 )+1 ) = work( ( n+1 )*( j-1 )+1 ) - one
273 80 CONTINUE
274*
275 result( 2 ) = min( dlange( '1', n, n, work, n, work( n**2+1 ) ),
276 $ dble( n ) ) / ( n*ulp )
277*
278 RETURN
279*
280* End of DSBT21
281*
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:188
subroutine dspr2(uplo, n, alpha, x, incx, y, incy, ap)
DSPR2
Definition dspr2.f:142
subroutine dspr(uplo, n, alpha, x, incx, ap)
DSPR
Definition dspr.f:127
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:112
double precision function dlansb(norm, uplo, n, k, ab, ldab, work)
DLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansb.f:127
double precision function dlansp(norm, uplo, n, ap, work)
DLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansp.f:112
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: