LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlansp()

double precision function dlansp ( character  norm,
character  uplo,
integer  n,
double precision, dimension( * )  ap,
double precision, dimension( * )  work 
)

DLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.

Download DLANSP + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DLANSP  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 real symmetric matrix A,  supplied in packed form.
Returns
DLANSP
    DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters
[in]NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in DLANSP as described
          above.
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          symmetric matrix A is supplied.
          = 'U':  Upper triangular part of A is supplied
          = 'L':  Lower triangular part of A is supplied
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, DLANSP is
          set to zero.
[in]AP
          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          The upper or lower triangle of the symmetric matrix A, packed
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
          WORK is not referenced.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 113 of file dlansp.f.

114*
115* -- LAPACK auxiliary routine --
116* -- LAPACK is a software package provided by Univ. of Tennessee, --
117* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
118*
119* .. Scalar Arguments ..
120 CHARACTER NORM, UPLO
121 INTEGER N
122* ..
123* .. Array Arguments ..
124 DOUBLE PRECISION AP( * ), WORK( * )
125* ..
126*
127* =====================================================================
128*
129* .. Parameters ..
130 DOUBLE PRECISION ONE, ZERO
131 parameter( one = 1.0d+0, zero = 0.0d+0 )
132* ..
133* .. Local Scalars ..
134 INTEGER I, J, K
135 DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
136* ..
137* .. External Subroutines ..
138 EXTERNAL dlassq
139* ..
140* .. External Functions ..
141 LOGICAL LSAME, DISNAN
142 EXTERNAL lsame, disnan
143* ..
144* .. Intrinsic Functions ..
145 INTRINSIC abs, sqrt
146* ..
147* .. Executable Statements ..
148*
149 IF( n.EQ.0 ) THEN
150 VALUE = zero
151 ELSE IF( lsame( norm, 'M' ) ) THEN
152*
153* Find max(abs(A(i,j))).
154*
155 VALUE = zero
156 IF( lsame( uplo, 'U' ) ) THEN
157 k = 1
158 DO 20 j = 1, n
159 DO 10 i = k, k + j - 1
160 sum = abs( ap( i ) )
161 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
162 10 CONTINUE
163 k = k + j
164 20 CONTINUE
165 ELSE
166 k = 1
167 DO 40 j = 1, n
168 DO 30 i = k, k + n - j
169 sum = abs( ap( i ) )
170 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
171 30 CONTINUE
172 k = k + n - j + 1
173 40 CONTINUE
174 END IF
175 ELSE IF( ( lsame( norm, 'I' ) ) .OR. ( lsame( norm, 'O' ) ) .OR.
176 $ ( norm.EQ.'1' ) ) THEN
177*
178* Find normI(A) ( = norm1(A), since A is symmetric).
179*
180 VALUE = zero
181 k = 1
182 IF( lsame( uplo, 'U' ) ) THEN
183 DO 60 j = 1, n
184 sum = zero
185 DO 50 i = 1, j - 1
186 absa = abs( ap( k ) )
187 sum = sum + absa
188 work( i ) = work( i ) + absa
189 k = k + 1
190 50 CONTINUE
191 work( j ) = sum + abs( ap( k ) )
192 k = k + 1
193 60 CONTINUE
194 DO 70 i = 1, n
195 sum = work( i )
196 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
197 70 CONTINUE
198 ELSE
199 DO 80 i = 1, n
200 work( i ) = zero
201 80 CONTINUE
202 DO 100 j = 1, n
203 sum = work( j ) + abs( ap( k ) )
204 k = k + 1
205 DO 90 i = j + 1, n
206 absa = abs( ap( k ) )
207 sum = sum + absa
208 work( i ) = work( i ) + absa
209 k = k + 1
210 90 CONTINUE
211 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
212 100 CONTINUE
213 END IF
214 ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
215*
216* Find normF(A).
217*
218 scale = zero
219 sum = one
220 k = 2
221 IF( lsame( uplo, 'U' ) ) THEN
222 DO 110 j = 2, n
223 CALL dlassq( j-1, ap( k ), 1, scale, sum )
224 k = k + j
225 110 CONTINUE
226 ELSE
227 DO 120 j = 1, n - 1
228 CALL dlassq( n-j, ap( k ), 1, scale, sum )
229 k = k + n - j + 1
230 120 CONTINUE
231 END IF
232 sum = 2*sum
233 k = 1
234 DO 130 i = 1, n
235 IF( ap( k ).NE.zero ) THEN
236 absa = abs( ap( k ) )
237 IF( scale.LT.absa ) THEN
238 sum = one + sum*( scale / absa )**2
239 scale = absa
240 ELSE
241 sum = sum + ( absa / scale )**2
242 END IF
243 END IF
244 IF( lsame( uplo, 'U' ) ) THEN
245 k = k + i + 1
246 ELSE
247 k = k + n - i + 1
248 END IF
249 130 CONTINUE
250 VALUE = scale*sqrt( sum )
251 END IF
252*
253 dlansp = VALUE
254 RETURN
255*
256* End of DLANSP
257*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:59
double precision function dlansp(norm, uplo, n, ap, work)
DLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansp.f:114
subroutine dlassq(n, x, incx, scale, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
Definition dlassq.f90:124
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: