![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zchkhs | ( | integer | nsizes, |
integer, dimension( * ) | nn, | ||
integer | ntypes, | ||
logical, dimension( * ) | dotype, | ||
integer, dimension( 4 ) | iseed, | ||
double precision | thresh, | ||
integer | nounit, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( lda, * ) | h, | ||
complex*16, dimension( lda, * ) | t1, | ||
complex*16, dimension( lda, * ) | t2, | ||
complex*16, dimension( ldu, * ) | u, | ||
integer | ldu, | ||
complex*16, dimension( ldu, * ) | z, | ||
complex*16, dimension( ldu, * ) | uz, | ||
complex*16, dimension( * ) | w1, | ||
complex*16, dimension( * ) | w3, | ||
complex*16, dimension( ldu, * ) | evectl, | ||
complex*16, dimension( ldu, * ) | evectr, | ||
complex*16, dimension( ldu, * ) | evecty, | ||
complex*16, dimension( ldu, * ) | evectx, | ||
complex*16, dimension( ldu, * ) | uu, | ||
complex*16, dimension( * ) | tau, | ||
complex*16, dimension( * ) | work, | ||
integer | nwork, | ||
double precision, dimension( * ) | rwork, | ||
integer, dimension( * ) | iwork, | ||
logical, dimension( * ) | select, | ||
double precision, dimension( 16 ) | result, | ||
integer | info ) |
ZCHKHS
!> !> ZCHKHS checks the nonsymmetric eigenvalue problem routines. !> !> ZGEHRD factors A as U H U' , where ' means conjugate !> transpose, H is hessenberg, and U is unitary. !> !> ZUNGHR generates the unitary matrix U. !> !> ZUNMHR multiplies a matrix by the unitary matrix U. !> !> ZHSEQR factors H as Z T Z' , where Z is unitary and T !> is upper triangular. It also computes the eigenvalues, !> w(1), ..., w(n); we define a diagonal matrix W whose !> (diagonal) entries are the eigenvalues. !> !> ZTREVC computes the left eigenvector matrix L and the !> right eigenvector matrix R for the matrix T. The !> columns of L are the complex conjugates of the left !> eigenvectors of T. The columns of R are the right !> eigenvectors of T. L is lower triangular, and R is !> upper triangular. !> !> ZHSEIN computes the left eigenvector matrix Y and the !> right eigenvector matrix X for the matrix H. The !> columns of Y are the complex conjugates of the left !> eigenvectors of H. The columns of X are the right !> eigenvectors of H. Y is lower triangular, and X is !> upper triangular. !> !> ZTREVC3 computes left and right eigenvector matrices !> from a Schur matrix T and backtransforms them with Z !> to eigenvector matrices L and R for A. L and R are !> GE matrices. !> !> When ZCHKHS is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix will be generated and used !> to test the nonsymmetric eigenroutines. For each matrix, 16 !> tests will be performed: !> !> (1) | A - U H U**H | / ( |A| n ulp ) !> !> (2) | I - UU**H | / ( n ulp ) !> !> (3) | H - Z T Z**H | / ( |H| n ulp ) !> !> (4) | I - ZZ**H | / ( n ulp ) !> !> (5) | A - UZ H (UZ)**H | / ( |A| n ulp ) !> !> (6) | I - UZ (UZ)**H | / ( n ulp ) !> !> (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp ) !> !> (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp ) !> !> (9) | TR - RW | / ( |T| |R| ulp ) !> !> (10) | L**H T - W**H L | / ( |T| |L| ulp ) !> !> (11) | HX - XW | / ( |H| |X| ulp ) !> !> (12) | Y**H H - W**H Y | / ( |H| |Y| ulp ) !> !> (13) | AX - XW | / ( |A| |X| ulp ) !> !> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) !> !> (15) | AR - RW | / ( |A| |R| ulp ) !> !> (16) | LA - WL | / ( |A| |L| ulp ) !> !> The are specified by an array NN(1:NSIZES); the value of !> each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> Currently, the list of possible types is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> (3) A (transposed) Jordan block, with 1's on the diagonal. !> !> (4) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random complex angles. !> (ULP = (first number larger than 1) - 1 ) !> (5) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random complex angles. !> (6) A diagonal matrix with entries 1, ULP, ..., ULP !> and random complex angles. !> !> (7) Same as (4), but multiplied by SQRT( overflow threshold ) !> (8) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (9) A matrix of the form U' T U, where U is unitary and !> T has evenly spaced entries 1, ..., ULP with random complex !> angles on the diagonal and random O(1) entries in the upper !> triangle. !> !> (10) A matrix of the form U' T U, where U is unitary and !> T has geometrically spaced entries 1, ..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (11) A matrix of the form U' T U, where U is unitary and !> T has entries 1, ULP,..., ULP with random !> complex angles on the diagonal and random O(1) entries in !> the upper triangle. !> !> (12) A matrix of the form U' T U, where U is unitary and !> T has complex eigenvalues randomly chosen from !> ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (13) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (14) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has geometrically spaced entries !> 1, ..., ULP with random complex angles on the diagonal !> and random O(1) entries in the upper triangle. !> !> (15) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has entries 1, ULP,..., ULP !> with random complex angles on the diagonal and random O(1) !> entries in the upper triangle. !> !> (16) A matrix of the form X' T X, where X has condition !> SQRT( ULP ) and T has complex eigenvalues randomly chosen !> from ULP < |z| < 1 and random O(1) entries in the upper !> triangle. !> !> (17) Same as (16), but multiplied by SQRT( overflow threshold ) !> (18) Same as (16), but multiplied by SQRT( underflow threshold ) !> !> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 !> (20) Same as (19), but multiplied by SQRT( overflow threshold ) !> (21) Same as (19), but multiplied by SQRT( underflow threshold ) !>
!> NSIZES - INTEGER !> The number of sizes of matrices to use. If it is zero, !> ZCHKHS does nothing. It must be at least zero. !> Not modified. !> !> NN - INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES - INTEGER !> The number of elements in DOTYPE. If it is zero, ZCHKHS !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE - LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED - INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to ZCHKHS to continue the same random number !> sequence. !> Modified. !> !> THRESH - DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT - INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A - COMPLEX*16 array, dimension (LDA,max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA - INTEGER !> The leading dimension of A, H, T1 and T2. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> H - COMPLEX*16 array, dimension (LDA,max(NN)) !> The upper hessenberg matrix computed by ZGEHRD. On exit, !> H contains the Hessenberg form of the matrix in A. !> Modified. !> !> T1 - COMPLEX*16 array, dimension (LDA,max(NN)) !> The Schur (=) matrix computed by ZHSEQR !> if Z is computed. On exit, T1 contains the Schur form of !> the matrix in A. !> Modified. !> !> T2 - COMPLEX*16 array, dimension (LDA,max(NN)) !> The Schur matrix computed by ZHSEQR when Z is not computed. !> This should be identical to T1. !> Modified. !> !> LDU - INTEGER !> The leading dimension of U, Z, UZ and UU. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> U - COMPLEX*16 array, dimension (LDU,max(NN)) !> The unitary matrix computed by ZGEHRD. !> Modified. !> !> Z - COMPLEX*16 array, dimension (LDU,max(NN)) !> The unitary matrix computed by ZHSEQR. !> Modified. !> !> UZ - COMPLEX*16 array, dimension (LDU,max(NN)) !> The product of U times Z. !> Modified. !> !> W1 - COMPLEX*16 array, dimension (max(NN)) !> The eigenvalues of A, as computed by a full Schur !> decomposition H = Z T Z'. On exit, W1 contains the !> eigenvalues of the matrix in A. !> Modified. !> !> W3 - COMPLEX*16 array, dimension (max(NN)) !> The eigenvalues of A, as computed by a partial Schur !> decomposition (Z not computed, T only computed as much !> as is necessary for determining eigenvalues). On exit, !> W3 contains the eigenvalues of the matrix in A, possibly !> perturbed by ZHSEIN. !> Modified. !> !> EVECTL - COMPLEX*16 array, dimension (LDU,max(NN)) !> The conjugate transpose of the (upper triangular) left !> eigenvector matrix for the matrix in T1. !> Modified. !> !> EVEZTR - COMPLEX*16 array, dimension (LDU,max(NN)) !> The (upper triangular) right eigenvector matrix for the !> matrix in T1. !> Modified. !> !> EVECTY - COMPLEX*16 array, dimension (LDU,max(NN)) !> The conjugate transpose of the left eigenvector matrix !> for the matrix in H. !> Modified. !> !> EVECTX - COMPLEX*16 array, dimension (LDU,max(NN)) !> The right eigenvector matrix for the matrix in H. !> Modified. !> !> UU - COMPLEX*16 array, dimension (LDU,max(NN)) !> Details of the unitary matrix computed by ZGEHRD. !> Modified. !> !> TAU - COMPLEX*16 array, dimension (max(NN)) !> Further details of the unitary matrix computed by ZGEHRD. !> Modified. !> !> WORK - COMPLEX*16 array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK - INTEGER !> The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2. !> !> RWORK - DOUBLE PRECISION array, dimension (max(NN)) !> Workspace. Could be equivalenced to IWORK, but not SELECT. !> Modified. !> !> IWORK - INTEGER array, dimension (max(NN)) !> Workspace. !> Modified. !> !> SELECT - LOGICAL array, dimension (max(NN)) !> Workspace. Could be equivalenced to IWORK, but not RWORK. !> Modified. !> !> RESULT - DOUBLE PRECISION array, dimension (16) !> The values computed by the fourteen tests described above. !> The values are currently limited to 1/ulp, to avoid !> overflow. !> Modified. !> !> INFO - INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -6: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -14: LDU < 1 or LDU < NMAX. !> -26: NWORK too small. !> If ZLATMR, CLATMS, or CLATME returns an error code, the !> absolute value of it is returned. !> If 1, then ZHSEQR could not find all the shifts. !> If 2, then the EISPACK code (for small blocks) failed. !> If >2, then 30*N iterations were not enough to find an !> eigenvalue or to decompose the problem. !> Modified. !> !>----------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> MTEST The number of tests defined: care must be taken !> that (1) the size of RESULT, (2) the number of !> tests actually performed, and (3) MTEST agree. !> NTEST The number of tests performed on this matrix !> so far. This should be less than MTEST, and !> equal to it by the last test. It will be less !> if any of the routines being tested indicates !> that it could not compute the matrices that !> would be tested. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by DLAFTS). !> COND, CONDS, !> IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL, !> RTULP, RTULPI Square roots of the previous 4 values. !> !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !> KCONDS(j) Selects whether CONDS is to be 1 or !> 1/sqrt(ulp). (0 means irrelevant.) !>
Definition at line 416 of file zchkhs.f.