LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zhst01 | ( | integer | n, |
integer | ilo, | ||
integer | ihi, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( ldh, * ) | h, | ||
integer | ldh, | ||
complex*16, dimension( ldq, * ) | q, | ||
integer | ldq, | ||
complex*16, dimension( lwork ) | work, | ||
integer | lwork, | ||
double precision, dimension( * ) | rwork, | ||
double precision, dimension( 2 ) | result ) |
ZHST01
!> !> ZHST01 tests the reduction of a general matrix A to upper Hessenberg !> form: A = Q*H*Q'. Two test ratios are computed; !> !> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) !> !> The matrix Q is assumed to be given explicitly as it would be !> following ZGEHRD + ZUNGHR. !> !> In this version, ILO and IHI are not used, but they could be used !> to save some work if this is desired. !>
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | ILO | !> ILO is INTEGER !> |
[in] | IHI | !> IHI is INTEGER !> !> A is assumed to be upper triangular in rows and columns !> 1:ILO-1 and IHI+1:N, so Q differs from the identity only in !> rows and columns ILO+1:IHI. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The original n by n matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[in] | H | !> H is COMPLEX*16 array, dimension (LDH,N) !> The upper Hessenberg matrix H from the reduction A = Q*H*Q' !> as computed by ZGEHRD. H is assumed to be zero below the !> first subdiagonal. !> |
[in] | LDH | !> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !> |
[in] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> The orthogonal matrix Q from the reduction A = Q*H*Q' as !> computed by ZGEHRD + ZUNGHR. !> |
[in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N). !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (LWORK) !> |
[in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. LWORK >= 2*N*N. !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
[out] | RESULT | !> RESULT is DOUBLE PRECISION array, dimension (2) !> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS ) !> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS ) !> |
Definition at line 138 of file zhst01.f.