LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zunt01()

subroutine zunt01 ( character rowcol,
integer m,
integer n,
complex*16, dimension( ldu, * ) u,
integer ldu,
complex*16, dimension( * ) work,
integer lwork,
double precision, dimension( * ) rwork,
double precision resid )

ZUNT01

Purpose:
!>
!> ZUNT01 checks that the matrix U is unitary by computing the ratio
!>
!>    RESID = norm( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
!> or
!>    RESID = norm( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
!>
!> Alternatively, if there isn't sufficient workspace to form
!> I - U*U' or I - U'*U, the ratio is computed as
!>
!>    RESID = abs( I - U*U' ) / ( n * EPS ), if ROWCOL = 'R',
!> or
!>    RESID = abs( I - U'*U ) / ( m * EPS ), if ROWCOL = 'C'.
!>
!> where EPS is the machine precision.  ROWCOL is used only if m = n;
!> if m > n, ROWCOL is assumed to be 'C', and if m < n, ROWCOL is
!> assumed to be 'R'.
!> 
Parameters
[in]ROWCOL
!>          ROWCOL is CHARACTER
!>          Specifies whether the rows or columns of U should be checked
!>          for orthogonality.  Used only if M = N.
!>          = 'R':  Check for orthogonal rows of U
!>          = 'C':  Check for orthogonal columns of U
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix U.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix U.
!> 
[in]U
!>          U is COMPLEX*16 array, dimension (LDU,N)
!>          The unitary matrix U.  U is checked for orthogonal columns
!>          if m > n or if m = n and ROWCOL = 'C'.  U is checked for
!>          orthogonal rows if m < n or if m = n and ROWCOL = 'R'.
!> 
[in]LDU
!>          LDU is INTEGER
!>          The leading dimension of the array U.  LDU >= max(1,M).
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (LWORK)
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.  For best performance, LWORK
!>          should be at least N*N if ROWCOL = 'C' or M*M if
!>          ROWCOL = 'R', but the test will be done even if LWORK is 0.
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (min(M,N))
!>          Used only if LWORK is large enough to use the Level 3 BLAS
!>          code.
!> 
[out]RESID
!>          RESID is DOUBLE PRECISION
!>          RESID = norm( I - U * U' ) / ( n * EPS ), if ROWCOL = 'R', or
!>          RESID = norm( I - U' * U ) / ( m * EPS ), if ROWCOL = 'C'.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 124 of file zunt01.f.

126*
127* -- LAPACK test routine --
128* -- LAPACK is a software package provided by Univ. of Tennessee, --
129* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130*
131* .. Scalar Arguments ..
132 CHARACTER ROWCOL
133 INTEGER LDU, LWORK, M, N
134 DOUBLE PRECISION RESID
135* ..
136* .. Array Arguments ..
137 DOUBLE PRECISION RWORK( * )
138 COMPLEX*16 U( LDU, * ), WORK( * )
139* ..
140*
141* =====================================================================
142*
143* .. Parameters ..
144 DOUBLE PRECISION ZERO, ONE
145 parameter( zero = 0.0d+0, one = 1.0d+0 )
146* ..
147* .. Local Scalars ..
148 CHARACTER TRANSU
149 INTEGER I, J, K, LDWORK, MNMIN
150 DOUBLE PRECISION EPS
151 COMPLEX*16 TMP, ZDUM
152* ..
153* .. External Functions ..
154 LOGICAL LSAME
155 DOUBLE PRECISION DLAMCH, ZLANSY
156 COMPLEX*16 ZDOTC
157 EXTERNAL lsame, dlamch, zlansy, zdotc
158* ..
159* .. External Subroutines ..
160 EXTERNAL zherk, zlaset
161* ..
162* .. Intrinsic Functions ..
163 INTRINSIC abs, dble, dcmplx, dimag, max, min
164* ..
165* .. Statement Functions ..
166 DOUBLE PRECISION CABS1
167* ..
168* .. Statement Function definitions ..
169 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
170* ..
171* .. Executable Statements ..
172*
173 resid = zero
174*
175* Quick return if possible
176*
177 IF( m.LE.0 .OR. n.LE.0 )
178 $ RETURN
179*
180 eps = dlamch( 'Precision' )
181 IF( m.LT.n .OR. ( m.EQ.n .AND. lsame( rowcol, 'R' ) ) ) THEN
182 transu = 'N'
183 k = n
184 ELSE
185 transu = 'C'
186 k = m
187 END IF
188 mnmin = min( m, n )
189*
190 IF( ( mnmin+1 )*mnmin.LE.lwork ) THEN
191 ldwork = mnmin
192 ELSE
193 ldwork = 0
194 END IF
195 IF( ldwork.GT.0 ) THEN
196*
197* Compute I - U*U' or I - U'*U.
198*
199 CALL zlaset( 'Upper', mnmin, mnmin, dcmplx( zero ),
200 $ dcmplx( one ), work, ldwork )
201 CALL zherk( 'Upper', transu, mnmin, k, -one, u, ldu, one, work,
202 $ ldwork )
203*
204* Compute norm( I - U*U' ) / ( K * EPS ) .
205*
206 resid = zlansy( '1', 'Upper', mnmin, work, ldwork, rwork )
207 resid = ( resid / dble( k ) ) / eps
208 ELSE IF( transu.EQ.'C' ) THEN
209*
210* Find the maximum element in abs( I - U'*U ) / ( m * EPS )
211*
212 DO 20 j = 1, n
213 DO 10 i = 1, j
214 IF( i.NE.j ) THEN
215 tmp = zero
216 ELSE
217 tmp = one
218 END IF
219 tmp = tmp - zdotc( m, u( 1, i ), 1, u( 1, j ), 1 )
220 resid = max( resid, cabs1( tmp ) )
221 10 CONTINUE
222 20 CONTINUE
223 resid = ( resid / dble( m ) ) / eps
224 ELSE
225*
226* Find the maximum element in abs( I - U*U' ) / ( n * EPS )
227*
228 DO 40 j = 1, m
229 DO 30 i = 1, j
230 IF( i.NE.j ) THEN
231 tmp = zero
232 ELSE
233 tmp = one
234 END IF
235 tmp = tmp - zdotc( n, u( j, 1 ), ldu, u( i, 1 ), ldu )
236 resid = max( resid, cabs1( tmp ) )
237 30 CONTINUE
238 40 CONTINUE
239 resid = ( resid / dble( n ) ) / eps
240 END IF
241 RETURN
242*
243* End of ZUNT01
244*
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
subroutine zherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
ZHERK
Definition zherk.f:173
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlansy(norm, uplo, n, a, lda, work)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlansy.f:121
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: