LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine ddrvsg2stg | ( | integer | nsizes, |
integer, dimension( * ) | nn, | ||
integer | ntypes, | ||
logical, dimension( * ) | dotype, | ||
integer, dimension( 4 ) | iseed, | ||
double precision | thresh, | ||
integer | nounit, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( * ) | d, | ||
double precision, dimension( * ) | d2, | ||
double precision, dimension( ldz, * ) | z, | ||
integer | ldz, | ||
double precision, dimension( lda, * ) | ab, | ||
double precision, dimension( ldb, * ) | bb, | ||
double precision, dimension( * ) | ap, | ||
double precision, dimension( * ) | bp, | ||
double precision, dimension( * ) | work, | ||
integer | nwork, | ||
integer, dimension( * ) | iwork, | ||
integer | liwork, | ||
double precision, dimension( * ) | result, | ||
integer | info ) |
DDRVSG2STG
!> !> DDRVSG2STG checks the real symmetric generalized eigenproblem !> drivers. !> !> DSYGV computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite generalized !> eigenproblem. !> !> DSYGVD computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite generalized !> eigenproblem using a divide and conquer algorithm. !> !> DSYGVX computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite generalized !> eigenproblem. !> !> DSPGV computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite generalized !> eigenproblem in packed storage. !> !> DSPGVD computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite generalized !> eigenproblem in packed storage using a divide and !> conquer algorithm. !> !> DSPGVX computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite generalized !> eigenproblem in packed storage. !> !> DSBGV computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite banded !> generalized eigenproblem. !> !> DSBGVD computes all eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite banded !> generalized eigenproblem using a divide and conquer !> algorithm. !> !> DSBGVX computes selected eigenvalues and, optionally, !> eigenvectors of a real symmetric-definite banded !> generalized eigenproblem. !> !> When DDRVSG2STG is called, a number of matrix () and a !> number of matrix are specified. For each size () !> and each type of matrix, one matrix A of the given type will be !> generated; a random well-conditioned matrix B is also generated !> and the pair (A,B) is used to test the drivers. !> !> For each pair (A,B), the following tests are performed: !> !> (1) DSYGV with ITYPE = 1 and UPLO ='U': !> !> | A Z - B Z D | / ( |A| |Z| n ulp ) !> | D - D2 | / ( |D| ulp ) where D is computed by !> DSYGV and D2 is computed by !> DSYGV_2STAGE. This test is !> only performed for DSYGV !> !> (2) as (1) but calling DSPGV !> (3) as (1) but calling DSBGV !> (4) as (1) but with UPLO = 'L' !> (5) as (4) but calling DSPGV !> (6) as (4) but calling DSBGV !> !> (7) DSYGV with ITYPE = 2 and UPLO ='U': !> !> | A B Z - Z D | / ( |A| |Z| n ulp ) !> !> (8) as (7) but calling DSPGV !> (9) as (7) but with UPLO = 'L' !> (10) as (9) but calling DSPGV !> !> (11) DSYGV with ITYPE = 3 and UPLO ='U': !> !> | B A Z - Z D | / ( |A| |Z| n ulp ) !> !> (12) as (11) but calling DSPGV !> (13) as (11) but with UPLO = 'L' !> (14) as (13) but calling DSPGV !> !> DSYGVD, DSPGVD and DSBGVD performed the same 14 tests. !> !> DSYGVX, DSPGVX and DSBGVX performed the above 14 tests with !> the parameter RANGE = 'A', 'N' and 'I', respectively. !> !> The are specified by an array NN(1:NSIZES); the value !> of each element NN(j) specifies one size. !> The are specified by a logical array DOTYPE( 1:NTYPES ); !> if DOTYPE(j) is .TRUE., then matrix type will be generated. !> This type is used for the matrix A which has half-bandwidth KA. !> B is generated as a well-conditioned positive definite matrix !> with half-bandwidth KB (<= KA). !> Currently, the list of possible types for A is: !> !> (1) The zero matrix. !> (2) The identity matrix. !> !> (3) A diagonal matrix with evenly spaced entries !> 1, ..., ULP and random signs. !> (ULP = (first number larger than 1) - 1 ) !> (4) A diagonal matrix with geometrically spaced entries !> 1, ..., ULP and random signs. !> (5) A diagonal matrix with entries !> 1, ULP, ..., ULP and random signs. !> !> (6) Same as (4), but multiplied by SQRT( overflow threshold ) !> (7) Same as (4), but multiplied by SQRT( underflow threshold ) !> !> (8) A matrix of the form U* D U, where U is orthogonal and !> D has evenly spaced entries 1, ..., ULP with random signs !> on the diagonal. !> !> (9) A matrix of the form U* D U, where U is orthogonal and !> D has geometrically spaced entries 1, ..., ULP with random !> signs on the diagonal. !> !> (10) A matrix of the form U* D U, where U is orthogonal and !> D has entries 1, ULP,..., ULP with random !> signs on the diagonal. !> !> (11) Same as (8), but multiplied by SQRT( overflow threshold ) !> (12) Same as (8), but multiplied by SQRT( underflow threshold ) !> !> (13) symmetric matrix with random entries chosen from (-1,1). !> (14) Same as (13), but multiplied by SQRT( overflow threshold ) !> (15) Same as (13), but multiplied by SQRT( underflow threshold) !> !> (16) Same as (8), but with KA = 1 and KB = 1 !> (17) Same as (8), but with KA = 2 and KB = 1 !> (18) Same as (8), but with KA = 2 and KB = 2 !> (19) Same as (8), but with KA = 3 and KB = 1 !> (20) Same as (8), but with KA = 3 and KB = 2 !> (21) Same as (8), but with KA = 3 and KB = 3 !>
!> NSIZES INTEGER !> The number of sizes of matrices to use. If it is zero, !> DDRVSG2STG does nothing. It must be at least zero. !> Not modified. !> !> NN INTEGER array, dimension (NSIZES) !> An array containing the sizes to be used for the matrices. !> Zero values will be skipped. The values must be at least !> zero. !> Not modified. !> !> NTYPES INTEGER !> The number of elements in DOTYPE. If it is zero, DDRVSG2STG !> does nothing. It must be at least zero. If it is MAXTYP+1 !> and NSIZES is 1, then an additional type, MAXTYP+1 is !> defined, which is to use whatever matrix is in A. This !> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and !> DOTYPE(MAXTYP+1) is .TRUE. . !> Not modified. !> !> DOTYPE LOGICAL array, dimension (NTYPES) !> If DOTYPE(j) is .TRUE., then for each size in NN a !> matrix of that size and of type j will be generated. !> If NTYPES is smaller than the maximum number of types !> defined (PARAMETER MAXTYP), then types NTYPES+1 through !> MAXTYP will not be generated. If NTYPES is larger !> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) !> will be ignored. !> Not modified. !> !> ISEED INTEGER array, dimension (4) !> On entry ISEED specifies the seed of the random number !> generator. The array elements should be between 0 and 4095; !> if not they will be reduced mod 4096. Also, ISEED(4) must !> be odd. The random number generator uses a linear !> congruential sequence limited to small integers, and so !> should produce machine independent random numbers. The !> values of ISEED are changed on exit, and can be used in the !> next call to DDRVSG2STG to continue the same random number !> sequence. !> Modified. !> !> THRESH DOUBLE PRECISION !> A test will count as if the , computed as !> described above, exceeds THRESH. Note that the error !> is scaled to be O(1), so THRESH should be a reasonably !> small multiple of 1, e.g., 10 or 100. In particular, !> it should not depend on the precision (single vs. double) !> or the size of the matrix. It must be at least zero. !> Not modified. !> !> NOUNIT INTEGER !> The FORTRAN unit number for printing out error messages !> (e.g., if a routine returns IINFO not equal to 0.) !> Not modified. !> !> A DOUBLE PRECISION array, dimension (LDA , max(NN)) !> Used to hold the matrix whose eigenvalues are to be !> computed. On exit, A contains the last matrix actually !> used. !> Modified. !> !> LDA INTEGER !> The leading dimension of A and AB. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> B DOUBLE PRECISION array, dimension (LDB , max(NN)) !> Used to hold the symmetric positive definite matrix for !> the generalized problem. !> On exit, B contains the last matrix actually !> used. !> Modified. !> !> LDB INTEGER !> The leading dimension of B and BB. It must be at !> least 1 and at least max( NN ). !> Not modified. !> !> D DOUBLE PRECISION array, dimension (max(NN)) !> The eigenvalues of A. On exit, the eigenvalues in D !> correspond with the matrix in A. !> Modified. !> !> Z DOUBLE PRECISION array, dimension (LDZ, max(NN)) !> The matrix of eigenvectors. !> Modified. !> !> LDZ INTEGER !> The leading dimension of Z. It must be at least 1 and !> at least max( NN ). !> Not modified. !> !> AB DOUBLE PRECISION array, dimension (LDA, max(NN)) !> Workspace. !> Modified. !> !> BB DOUBLE PRECISION array, dimension (LDB, max(NN)) !> Workspace. !> Modified. !> !> AP DOUBLE PRECISION array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> BP DOUBLE PRECISION array, dimension (max(NN)**2) !> Workspace. !> Modified. !> !> WORK DOUBLE PRECISION array, dimension (NWORK) !> Workspace. !> Modified. !> !> NWORK INTEGER !> The number of entries in WORK. This must be at least !> 1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and !> lg( N ) = smallest integer k such that 2**k >= N. !> Not modified. !> !> IWORK INTEGER array, dimension (LIWORK) !> Workspace. !> Modified. !> !> LIWORK INTEGER !> The number of entries in WORK. This must be at least 6*N. !> Not modified. !> !> RESULT DOUBLE PRECISION array, dimension (70) !> The values computed by the 70 tests described above. !> Modified. !> !> INFO INTEGER !> If 0, then everything ran OK. !> -1: NSIZES < 0 !> -2: Some NN(j) < 0 !> -3: NTYPES < 0 !> -5: THRESH < 0 !> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). !> -16: LDZ < 1 or LDZ < NMAX. !> -21: NWORK too small. !> -23: LIWORK too small. !> If DLATMR, SLATMS, DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, !> DSBGVD, DSYGVX, DSPGVX or SSBGVX returns an error code, !> the absolute value of it is returned. !> Modified. !> !> ---------------------------------------------------------------------- !> !> Some Local Variables and Parameters: !> ---- ----- --------- --- ---------- !> ZERO, ONE Real 0 and 1. !> MAXTYP The number of types defined. !> NTEST The number of tests that have been run !> on this matrix. !> NTESTT The total number of tests for this call. !> NMAX Largest value in NN. !> NMATS The number of matrices generated so far. !> NERRS The number of tests which have exceeded THRESH !> so far (computed by DLAFTS). !> COND, IMODE Values to be passed to the matrix generators. !> ANORM Norm of A; passed to matrix generators. !> !> OVFL, UNFL Overflow and underflow thresholds. !> ULP, ULPINV Finest relative precision and its inverse. !> RTOVFL, RTUNFL Square roots of the previous 2 values. !> The following four arrays decode JTYPE: !> KTYPE(j) The general type (1-10) for type . !> KMODE(j) The MODE value to be passed to the matrix !> generator for type . !> KMAGN(j) The order of magnitude ( O(1), !> O(overflow^(1/2) ), O(underflow^(1/2) ) !>
Definition at line 358 of file ddrvsg2stg.f.