LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dspgvx()

subroutine dspgvx ( integer itype,
character jobz,
character range,
character uplo,
integer n,
double precision, dimension( * ) ap,
double precision, dimension( * ) bp,
double precision vl,
double precision vu,
integer il,
integer iu,
double precision abstol,
integer m,
double precision, dimension( * ) w,
double precision, dimension( ldz, * ) z,
integer ldz,
double precision, dimension( * ) work,
integer, dimension( * ) iwork,
integer, dimension( * ) ifail,
integer info )

DSPGVX

Download DSPGVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DSPGVX computes selected eigenvalues, and optionally, eigenvectors
!> of a real generalized symmetric-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A
!> and B are assumed to be symmetric, stored in packed storage, and B
!> is also positive definite.  Eigenvalues and eigenvectors can be
!> selected by specifying either a range of values or a range of indices
!> for the desired eigenvalues.
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]RANGE
!>          RANGE is CHARACTER*1
!>          = 'A': all eigenvalues will be found.
!>          = 'V': all eigenvalues in the half-open interval (VL,VU]
!>                 will be found.
!>          = 'I': the IL-th through IU-th eigenvalues will be found.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A and B are stored;
!>          = 'L':  Lower triangle of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix pencil (A,B).  N >= 0.
!> 
[in,out]AP
!>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
!>
!>          On exit, the contents of AP are destroyed.
!> 
[in,out]BP
!>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          B, packed columnwise in a linear array.  The j-th column of B
!>          is stored in the array BP as follows:
!>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
!>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
!>
!>          On exit, the triangular factor U or L from the Cholesky
!>          factorization B = U**T*U or B = L*L**T, in the same storage
!>          format as B.
!> 
[in]VL
!>          VL is DOUBLE PRECISION
!>
!>          If RANGE='V', the lower bound of the interval to
!>          be searched for eigenvalues. VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> 
[in]VU
!>          VU is DOUBLE PRECISION
!>
!>          If RANGE='V', the upper bound of the interval to
!>          be searched for eigenvalues. VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> 
[in]IL
!>          IL is INTEGER
!>
!>          If RANGE='I', the index of the
!>          smallest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> 
[in]IU
!>          IU is INTEGER
!>
!>          If RANGE='I', the index of the
!>          largest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> 
[in]ABSTOL
!>          ABSTOL is DOUBLE PRECISION
!>          The absolute error tolerance for the eigenvalues.
!>          An approximate eigenvalue is accepted as converged
!>          when it is determined to lie in an interval [a,b]
!>          of width less than or equal to
!>
!>                  ABSTOL + EPS *   max( |a|,|b| ) ,
!>
!>          where EPS is the machine precision.  If ABSTOL is less than
!>          or equal to zero, then  EPS*|T|  will be used in its place,
!>          where |T| is the 1-norm of the tridiagonal matrix obtained
!>          by reducing A to tridiagonal form.
!>
!>          Eigenvalues will be computed most accurately when ABSTOL is
!>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
!>          If this routine returns with INFO>0, indicating that some
!>          eigenvectors did not converge, try setting ABSTOL to
!>          2*DLAMCH('S').
!> 
[out]M
!>          M is INTEGER
!>          The total number of eigenvalues found.  0 <= M <= N.
!>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
!> 
[out]W
!>          W is DOUBLE PRECISION array, dimension (N)
!>          On normal exit, the first M elements contain the selected
!>          eigenvalues in ascending order.
!> 
[out]Z
!>          Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
!>          If JOBZ = 'N', then Z is not referenced.
!>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
!>          contain the orthonormal eigenvectors of the matrix A
!>          corresponding to the selected eigenvalues, with the i-th
!>          column of Z holding the eigenvector associated with W(i).
!>          The eigenvectors are normalized as follows:
!>          if ITYPE = 1 or 2, Z**T*B*Z = I;
!>          if ITYPE = 3, Z**T*inv(B)*Z = I.
!>
!>          If an eigenvector fails to converge, then that column of Z
!>          contains the latest approximation to the eigenvector, and the
!>          index of the eigenvector is returned in IFAIL.
!>          Note: the user must ensure that at least max(1,M) columns are
!>          supplied in the array Z; if RANGE = 'V', the exact value of M
!>          is not known in advance and an upper bound must be used.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (8*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (5*N)
!> 
[out]IFAIL
!>          IFAIL is INTEGER array, dimension (N)
!>          If JOBZ = 'V', then if INFO = 0, the first M elements of
!>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
!>          indices of the eigenvectors that failed to converge.
!>          If JOBZ = 'N', then IFAIL is not referenced.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  DPPTRF or DSPEVX returned an error code:
!>             <= N:  if INFO = i, DSPEVX failed to converge;
!>                    i eigenvectors failed to converge.  Their indices
!>                    are stored in array IFAIL.
!>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 267 of file dspgvx.f.

270*
271* -- LAPACK driver routine --
272* -- LAPACK is a software package provided by Univ. of Tennessee, --
273* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
274*
275* .. Scalar Arguments ..
276 CHARACTER JOBZ, RANGE, UPLO
277 INTEGER IL, INFO, ITYPE, IU, LDZ, M, N
278 DOUBLE PRECISION ABSTOL, VL, VU
279* ..
280* .. Array Arguments ..
281 INTEGER IFAIL( * ), IWORK( * )
282 DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
283 $ Z( LDZ, * )
284* ..
285*
286* =====================================================================
287*
288* .. Local Scalars ..
289 LOGICAL ALLEIG, INDEIG, UPPER, VALEIG, WANTZ
290 CHARACTER TRANS
291 INTEGER J
292* ..
293* .. External Functions ..
294 LOGICAL LSAME
295 EXTERNAL lsame
296* ..
297* .. External Subroutines ..
298 EXTERNAL dpptrf, dspevx, dspgst, dtpmv, dtpsv,
299 $ xerbla
300* ..
301* .. Intrinsic Functions ..
302 INTRINSIC min
303* ..
304* .. Executable Statements ..
305*
306* Test the input parameters.
307*
308 upper = lsame( uplo, 'U' )
309 wantz = lsame( jobz, 'V' )
310 alleig = lsame( range, 'A' )
311 valeig = lsame( range, 'V' )
312 indeig = lsame( range, 'I' )
313*
314 info = 0
315 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
316 info = -1
317 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
318 info = -2
319 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
320 info = -3
321 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
322 info = -4
323 ELSE IF( n.LT.0 ) THEN
324 info = -5
325 ELSE
326 IF( valeig ) THEN
327 IF( n.GT.0 .AND. vu.LE.vl ) THEN
328 info = -9
329 END IF
330 ELSE IF( indeig ) THEN
331 IF( il.LT.1 ) THEN
332 info = -10
333 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
334 info = -11
335 END IF
336 END IF
337 END IF
338 IF( info.EQ.0 ) THEN
339 IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
340 info = -16
341 END IF
342 END IF
343*
344 IF( info.NE.0 ) THEN
345 CALL xerbla( 'DSPGVX', -info )
346 RETURN
347 END IF
348*
349* Quick return if possible
350*
351 m = 0
352 IF( n.EQ.0 )
353 $ RETURN
354*
355* Form a Cholesky factorization of B.
356*
357 CALL dpptrf( uplo, n, bp, info )
358 IF( info.NE.0 ) THEN
359 info = n + info
360 RETURN
361 END IF
362*
363* Transform problem to standard eigenvalue problem and solve.
364*
365 CALL dspgst( itype, uplo, n, ap, bp, info )
366 CALL dspevx( jobz, range, uplo, n, ap, vl, vu, il, iu, abstol,
367 $ m,
368 $ w, z, ldz, work, iwork, ifail, info )
369*
370 IF( wantz ) THEN
371*
372* Backtransform eigenvectors to the original problem.
373*
374 IF( info.GT.0 )
375 $ m = info - 1
376 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
377*
378* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
379* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
380*
381 IF( upper ) THEN
382 trans = 'N'
383 ELSE
384 trans = 'T'
385 END IF
386*
387 DO 10 j = 1, m
388 CALL dtpsv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
389 $ 1 )
390 10 CONTINUE
391*
392 ELSE IF( itype.EQ.3 ) THEN
393*
394* For B*A*x=(lambda)*x;
395* backtransform eigenvectors: x = L*y or U**T*y
396*
397 IF( upper ) THEN
398 trans = 'T'
399 ELSE
400 trans = 'N'
401 END IF
402*
403 DO 20 j = 1, m
404 CALL dtpmv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
405 $ 1 )
406 20 CONTINUE
407 END IF
408 END IF
409*
410 RETURN
411*
412* End of DSPGVX
413*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dspevx(jobz, range, uplo, n, ap, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)
DSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition dspevx.f:232
subroutine dspgst(itype, uplo, n, ap, bp, info)
DSPGST
Definition dspgst.f:111
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dpptrf(uplo, n, ap, info)
DPPTRF
Definition dpptrf.f:117
subroutine dtpmv(uplo, trans, diag, n, ap, x, incx)
DTPMV
Definition dtpmv.f:142
subroutine dtpsv(uplo, trans, diag, n, ap, x, incx)
DTPSV
Definition dtpsv.f:144
Here is the call graph for this function:
Here is the caller graph for this function: