LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsygvd()

subroutine dsygvd ( integer itype,
character jobz,
character uplo,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( * ) w,
double precision, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer liwork,
integer info )

DSYGVD

Download DSYGVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
!> of a real generalized symmetric-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
!> B are assumed to be symmetric and B is also positive definite.
!> If eigenvectors are desired, it uses a divide and conquer algorithm.
!>
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA, N)
!>          On entry, the symmetric matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>
!>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
!>          matrix Z of eigenvectors.  The eigenvectors are normalized
!>          as follows:
!>          if ITYPE = 1 or 2, Z**T*B*Z = I;
!>          if ITYPE = 3, Z**T*inv(B)*Z = I.
!>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
!>          or the lower triangle (if UPLO='L') of A, including the
!>          diagonal, is destroyed.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB, N)
!>          On entry, the symmetric matrix B.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of B contains the
!>          upper triangular part of the matrix B.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of B contains
!>          the lower triangular part of the matrix B.
!>
!>          On exit, if INFO <= N, the part of B containing the matrix is
!>          overwritten by the triangular factor U or L from the Cholesky
!>          factorization B = U**T*U or B = L*L**T.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]W
!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK >= 1.
!>          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
!>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 
[in]LIWORK
!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If N <= 1,                LIWORK >= 1.
!>          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
!>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  DPOTRF or DSYEVD returned an error code:
!>             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
!>                    failed to converge; i off-diagonal elements of an
!>                    intermediate tridiagonal form did not converge to
!>                    zero;
!>                    if INFO = i and JOBZ = 'V', then the algorithm
!>                    failed to compute an eigenvalue while working on
!>                    the submatrix lying in rows and columns INFO/(N+1)
!>                    through mod(INFO,N+1);
!>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  Modified so that no backsubstitution is performed if DSYEVD fails to
!>  converge (NEIG in old code could be greater than N causing out of
!>  bounds reference to A - reported by Ralf Meyer).  Also corrected the
!>  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
!> 
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 217 of file dsygvd.f.

220*
221* -- LAPACK driver routine --
222* -- LAPACK is a software package provided by Univ. of Tennessee, --
223* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
224*
225* .. Scalar Arguments ..
226 CHARACTER JOBZ, UPLO
227 INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
228* ..
229* .. Array Arguments ..
230 INTEGER IWORK( * )
231 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
232* ..
233*
234* =====================================================================
235*
236* .. Parameters ..
237 DOUBLE PRECISION ONE
238 parameter( one = 1.0d+0 )
239* ..
240* .. Local Scalars ..
241 LOGICAL LQUERY, UPPER, WANTZ
242 CHARACTER TRANS
243 INTEGER LIOPT, LIWMIN, LOPT, LWMIN
244* ..
245* .. External Functions ..
246 LOGICAL LSAME
247 EXTERNAL lsame
248* ..
249* .. External Subroutines ..
250 EXTERNAL dpotrf, dsyevd, dsygst, dtrmm, dtrsm,
251 $ xerbla
252* ..
253* .. Intrinsic Functions ..
254 INTRINSIC dble, max
255* ..
256* .. Executable Statements ..
257*
258* Test the input parameters.
259*
260 wantz = lsame( jobz, 'V' )
261 upper = lsame( uplo, 'U' )
262 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
263*
264 info = 0
265 IF( n.LE.1 ) THEN
266 liwmin = 1
267 lwmin = 1
268 ELSE IF( wantz ) THEN
269 liwmin = 3 + 5*n
270 lwmin = 1 + 6*n + 2*n**2
271 ELSE
272 liwmin = 1
273 lwmin = 2*n + 1
274 END IF
275 lopt = lwmin
276 liopt = liwmin
277 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
278 info = -1
279 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
280 info = -2
281 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
282 info = -3
283 ELSE IF( n.LT.0 ) THEN
284 info = -4
285 ELSE IF( lda.LT.max( 1, n ) ) THEN
286 info = -6
287 ELSE IF( ldb.LT.max( 1, n ) ) THEN
288 info = -8
289 END IF
290*
291 IF( info.EQ.0 ) THEN
292 work( 1 ) = lopt
293 iwork( 1 ) = liopt
294*
295 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
296 info = -11
297 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
298 info = -13
299 END IF
300 END IF
301*
302 IF( info.NE.0 ) THEN
303 CALL xerbla( 'DSYGVD', -info )
304 RETURN
305 ELSE IF( lquery ) THEN
306 RETURN
307 END IF
308*
309* Quick return if possible
310*
311 IF( n.EQ.0 )
312 $ RETURN
313*
314* Form a Cholesky factorization of B.
315*
316 CALL dpotrf( uplo, n, b, ldb, info )
317 IF( info.NE.0 ) THEN
318 info = n + info
319 RETURN
320 END IF
321*
322* Transform problem to standard eigenvalue problem and solve.
323*
324 CALL dsygst( itype, uplo, n, a, lda, b, ldb, info )
325 CALL dsyevd( jobz, uplo, n, a, lda, w, work, lwork, iwork,
326 $ liwork,
327 $ info )
328 lopt = int( max( dble( lopt ), dble( work( 1 ) ) ) )
329 liopt = int( max( dble( liopt ), dble( iwork( 1 ) ) ) )
330*
331 IF( wantz .AND. info.EQ.0 ) THEN
332*
333* Backtransform eigenvectors to the original problem.
334*
335 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
336*
337* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
338* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
339*
340 IF( upper ) THEN
341 trans = 'N'
342 ELSE
343 trans = 'T'
344 END IF
345*
346 CALL dtrsm( 'Left', uplo, trans, 'Non-unit', n, n, one,
347 $ b, ldb, a, lda )
348*
349 ELSE IF( itype.EQ.3 ) THEN
350*
351* For B*A*x=(lambda)*x;
352* backtransform eigenvectors: x = L*y or U**T*y
353*
354 IF( upper ) THEN
355 trans = 'T'
356 ELSE
357 trans = 'N'
358 END IF
359*
360 CALL dtrmm( 'Left', uplo, trans, 'Non-unit', n, n, one,
361 $ b, ldb, a, lda )
362 END IF
363 END IF
364*
365 work( 1 ) = lopt
366 iwork( 1 ) = liopt
367*
368 RETURN
369*
370* End of DSYGVD
371*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dsyevd(jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices
Definition dsyevd.f:176
subroutine dsygst(itype, uplo, n, a, lda, b, ldb, info)
DSYGST
Definition dsygst.f:125
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dpotrf(uplo, n, a, lda, info)
DPOTRF
Definition dpotrf.f:105
subroutine dtrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
DTRMM
Definition dtrmm.f:177
subroutine dtrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
DTRSM
Definition dtrsm.f:181
Here is the call graph for this function:
Here is the caller graph for this function: