LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dspgv()

subroutine dspgv ( integer itype,
character jobz,
character uplo,
integer n,
double precision, dimension( * ) ap,
double precision, dimension( * ) bp,
double precision, dimension( * ) w,
double precision, dimension( ldz, * ) z,
integer ldz,
double precision, dimension( * ) work,
integer info )

DSPGV

Download DSPGV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DSPGV computes all the eigenvalues and, optionally, the eigenvectors
!> of a real generalized symmetric-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
!> Here A and B are assumed to be symmetric, stored in packed format,
!> and B is also positive definite.
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in,out]AP
!>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
!>
!>          On exit, the contents of AP are destroyed.
!> 
[in,out]BP
!>          BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          B, packed columnwise in a linear array.  The j-th column of B
!>          is stored in the array BP as follows:
!>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
!>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
!>
!>          On exit, the triangular factor U or L from the Cholesky
!>          factorization B = U**T*U or B = L*L**T, in the same storage
!>          format as B.
!> 
[out]W
!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]Z
!>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
!>          eigenvectors.  The eigenvectors are normalized as follows:
!>          if ITYPE = 1 or 2, Z**T*B*Z = I;
!>          if ITYPE = 3, Z**T*inv(B)*Z = I.
!>          If JOBZ = 'N', then Z is not referenced.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (3*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  DPPTRF or DSPEV returned an error code:
!>             <= N:  if INFO = i, DSPEV failed to converge;
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not converge to zero.
!>             > N:   if INFO = n + i, for 1 <= i <= n, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 156 of file dspgv.f.

159*
160* -- LAPACK driver routine --
161* -- LAPACK is a software package provided by Univ. of Tennessee, --
162* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163*
164* .. Scalar Arguments ..
165 CHARACTER JOBZ, UPLO
166 INTEGER INFO, ITYPE, LDZ, N
167* ..
168* .. Array Arguments ..
169 DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
170 $ Z( LDZ, * )
171* ..
172*
173* =====================================================================
174*
175* .. Local Scalars ..
176 LOGICAL UPPER, WANTZ
177 CHARACTER TRANS
178 INTEGER J, NEIG
179* ..
180* .. External Functions ..
181 LOGICAL LSAME
182 EXTERNAL lsame
183* ..
184* .. External Subroutines ..
185 EXTERNAL dpptrf, dspev, dspgst, dtpmv, dtpsv,
186 $ xerbla
187* ..
188* .. Executable Statements ..
189*
190* Test the input parameters.
191*
192 wantz = lsame( jobz, 'V' )
193 upper = lsame( uplo, 'U' )
194*
195 info = 0
196 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
197 info = -1
198 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
199 info = -2
200 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
201 info = -3
202 ELSE IF( n.LT.0 ) THEN
203 info = -4
204 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
205 info = -9
206 END IF
207 IF( info.NE.0 ) THEN
208 CALL xerbla( 'DSPGV ', -info )
209 RETURN
210 END IF
211*
212* Quick return if possible
213*
214 IF( n.EQ.0 )
215 $ RETURN
216*
217* Form a Cholesky factorization of B.
218*
219 CALL dpptrf( uplo, n, bp, info )
220 IF( info.NE.0 ) THEN
221 info = n + info
222 RETURN
223 END IF
224*
225* Transform problem to standard eigenvalue problem and solve.
226*
227 CALL dspgst( itype, uplo, n, ap, bp, info )
228 CALL dspev( jobz, uplo, n, ap, w, z, ldz, work, info )
229*
230 IF( wantz ) THEN
231*
232* Backtransform eigenvectors to the original problem.
233*
234 neig = n
235 IF( info.GT.0 )
236 $ neig = info - 1
237 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
238*
239* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
240* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
241*
242 IF( upper ) THEN
243 trans = 'N'
244 ELSE
245 trans = 'T'
246 END IF
247*
248 DO 10 j = 1, neig
249 CALL dtpsv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
250 $ 1 )
251 10 CONTINUE
252*
253 ELSE IF( itype.EQ.3 ) THEN
254*
255* For B*A*x=(lambda)*x;
256* backtransform eigenvectors: x = L*y or U**T*y
257*
258 IF( upper ) THEN
259 trans = 'T'
260 ELSE
261 trans = 'N'
262 END IF
263*
264 DO 20 j = 1, neig
265 CALL dtpmv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
266 $ 1 )
267 20 CONTINUE
268 END IF
269 END IF
270 RETURN
271*
272* End of DSPGV
273*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dspev(jobz, uplo, n, ap, w, z, ldz, work, info)
DSPEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices
Definition dspev.f:128
subroutine dspgst(itype, uplo, n, ap, bp, info)
DSPGST
Definition dspgst.f:111
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dpptrf(uplo, n, ap, info)
DPPTRF
Definition dpptrf.f:117
subroutine dtpmv(uplo, trans, diag, n, ap, x, incx)
DTPMV
Definition dtpmv.f:142
subroutine dtpsv(uplo, trans, diag, n, ap, x, incx)
DTPSV
Definition dtpsv.f:144
Here is the call graph for this function:
Here is the caller graph for this function: