LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsbgv()

subroutine dsbgv ( character jobz,
character uplo,
integer n,
integer ka,
integer kb,
double precision, dimension( ldab, * ) ab,
integer ldab,
double precision, dimension( ldbb, * ) bb,
integer ldbb,
double precision, dimension( * ) w,
double precision, dimension( ldz, * ) z,
integer ldz,
double precision, dimension( * ) work,
integer info )

DSBGV

Download DSBGV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DSBGV computes all the eigenvalues, and optionally, the eigenvectors
!> of a real generalized symmetric-definite banded eigenproblem, of
!> the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
!> and banded, and B is also positive definite.
!> 
Parameters
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in]KA
!>          KA is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
!> 
[in]KB
!>          KB is INTEGER
!>          The number of superdiagonals of the matrix B if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
!> 
[in,out]AB
!>          AB is DOUBLE PRECISION array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first ka+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
!>
!>          On exit, the contents of AB are destroyed.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KA+1.
!> 
[in,out]BB
!>          BB is DOUBLE PRECISION array, dimension (LDBB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix B, stored in the first kb+1 rows of the array.  The
!>          j-th column of B is stored in the j-th column of the array BB
!>          as follows:
!>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
!>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
!>
!>          On exit, the factor S from the split Cholesky factorization
!>          B = S**T*S, as returned by DPBSTF.
!> 
[in]LDBB
!>          LDBB is INTEGER
!>          The leading dimension of the array BB.  LDBB >= KB+1.
!> 
[out]W
!>          W is DOUBLE PRECISION array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]Z
!>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
!>          eigenvectors, with the i-th column of Z holding the
!>          eigenvector associated with W(i). The eigenvectors are
!>          normalized so that Z**T*B*Z = I.
!>          If JOBZ = 'N', then Z is not referenced.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= N.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (3*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, and i is:
!>             <= N:  the algorithm failed to converge:
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not converge to zero;
!>             > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
!>                    returned INFO = i: B is not positive definite.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 173 of file dsbgv.f.

176*
177* -- LAPACK driver routine --
178* -- LAPACK is a software package provided by Univ. of Tennessee, --
179* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
180*
181* .. Scalar Arguments ..
182 CHARACTER JOBZ, UPLO
183 INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N
184* ..
185* .. Array Arguments ..
186 DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), W( * ),
187 $ WORK( * ), Z( LDZ, * )
188* ..
189*
190* =====================================================================
191*
192* .. Local Scalars ..
193 LOGICAL UPPER, WANTZ
194 CHARACTER VECT
195 INTEGER IINFO, INDE, INDWRK
196* ..
197* .. External Functions ..
198 LOGICAL LSAME
199 EXTERNAL lsame
200* ..
201* .. External Subroutines ..
202 EXTERNAL dpbstf, dsbgst, dsbtrd, dsteqr, dsterf,
203 $ xerbla
204* ..
205* .. Executable Statements ..
206*
207* Test the input parameters.
208*
209 wantz = lsame( jobz, 'V' )
210 upper = lsame( uplo, 'U' )
211*
212 info = 0
213 IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
214 info = -1
215 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
216 info = -2
217 ELSE IF( n.LT.0 ) THEN
218 info = -3
219 ELSE IF( ka.LT.0 ) THEN
220 info = -4
221 ELSE IF( kb.LT.0 .OR. kb.GT.ka ) THEN
222 info = -5
223 ELSE IF( ldab.LT.ka+1 ) THEN
224 info = -7
225 ELSE IF( ldbb.LT.kb+1 ) THEN
226 info = -9
227 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
228 info = -12
229 END IF
230 IF( info.NE.0 ) THEN
231 CALL xerbla( 'DSBGV', -info )
232 RETURN
233 END IF
234*
235* Quick return if possible
236*
237 IF( n.EQ.0 )
238 $ RETURN
239*
240* Form a split Cholesky factorization of B.
241*
242 CALL dpbstf( uplo, n, kb, bb, ldbb, info )
243 IF( info.NE.0 ) THEN
244 info = n + info
245 RETURN
246 END IF
247*
248* Transform problem to standard eigenvalue problem.
249*
250 inde = 1
251 indwrk = inde + n
252 CALL dsbgst( jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, z, ldz,
253 $ work( indwrk ), iinfo )
254*
255* Reduce to tridiagonal form.
256*
257 IF( wantz ) THEN
258 vect = 'U'
259 ELSE
260 vect = 'N'
261 END IF
262 CALL dsbtrd( vect, uplo, n, ka, ab, ldab, w, work( inde ), z,
263 $ ldz,
264 $ work( indwrk ), iinfo )
265*
266* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR.
267*
268 IF( .NOT.wantz ) THEN
269 CALL dsterf( n, w, work( inde ), info )
270 ELSE
271 CALL dsteqr( jobz, n, w, work( inde ), z, ldz,
272 $ work( indwrk ),
273 $ info )
274 END IF
275 RETURN
276*
277* End of DSBGV
278*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dsbgst(vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx, work, info)
DSBGST
Definition dsbgst.f:158
subroutine dsbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
DSBTRD
Definition dsbtrd.f:161
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dpbstf(uplo, n, kd, ab, ldab, info)
DPBSTF
Definition dpbstf.f:150
subroutine dsteqr(compz, n, d, e, z, ldz, work, info)
DSTEQR
Definition dsteqr.f:129
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:84
Here is the call graph for this function:
Here is the caller graph for this function: