LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zgees()

subroutine zgees ( character  jobvs,
character  sort,
external  select,
integer  n,
complex*16, dimension( lda, * )  a,
integer  lda,
integer  sdim,
complex*16, dimension( * )  w,
complex*16, dimension( ldvs, * )  vs,
integer  ldvs,
complex*16, dimension( * )  work,
integer  lwork,
double precision, dimension( * )  rwork,
logical, dimension( * )  bwork,
integer  info 
)

ZGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices

Download ZGEES + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZGEES computes for an N-by-N complex nonsymmetric matrix A, the
 eigenvalues, the Schur form T, and, optionally, the matrix of Schur
 vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).

 Optionally, it also orders the eigenvalues on the diagonal of the
 Schur form so that selected eigenvalues are at the top left.
 The leading columns of Z then form an orthonormal basis for the
 invariant subspace corresponding to the selected eigenvalues.

 A complex matrix is in Schur form if it is upper triangular.
Parameters
[in]JOBVS
          JOBVS is CHARACTER*1
          = 'N': Schur vectors are not computed;
          = 'V': Schur vectors are computed.
[in]SORT
          SORT is CHARACTER*1
          Specifies whether or not to order the eigenvalues on the
          diagonal of the Schur form.
          = 'N': Eigenvalues are not ordered:
          = 'S': Eigenvalues are ordered (see SELECT).
[in]SELECT
          SELECT is a LOGICAL FUNCTION of one COMPLEX*16 argument
          SELECT must be declared EXTERNAL in the calling subroutine.
          If SORT = 'S', SELECT is used to select eigenvalues to order
          to the top left of the Schur form.
          IF SORT = 'N', SELECT is not referenced.
          The eigenvalue W(j) is selected if SELECT(W(j)) is true.
[in]N
          N is INTEGER
          The order of the matrix A. N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the N-by-N matrix A.
          On exit, A has been overwritten by its Schur form T.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]SDIM
          SDIM is INTEGER
          If SORT = 'N', SDIM = 0.
          If SORT = 'S', SDIM = number of eigenvalues for which
                         SELECT is true.
[out]W
          W is COMPLEX*16 array, dimension (N)
          W contains the computed eigenvalues, in the same order that
          they appear on the diagonal of the output Schur form T.
[out]VS
          VS is COMPLEX*16 array, dimension (LDVS,N)
          If JOBVS = 'V', VS contains the unitary matrix Z of Schur
          vectors.
          If JOBVS = 'N', VS is not referenced.
[in]LDVS
          LDVS is INTEGER
          The leading dimension of the array VS.  LDVS >= 1; if
          JOBVS = 'V', LDVS >= N.
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= max(1,2*N).
          For good performance, LWORK must generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]BWORK
          BWORK is LOGICAL array, dimension (N)
          Not referenced if SORT = 'N'.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value.
          > 0: if INFO = i, and i is
               <= N:  the QR algorithm failed to compute all the
                      eigenvalues; elements 1:ILO-1 and i+1:N of W
                      contain those eigenvalues which have converged;
                      if JOBVS = 'V', VS contains the matrix which
                      reduces A to its partially converged Schur form.
               = N+1: the eigenvalues could not be reordered because
                      some eigenvalues were too close to separate (the
                      problem is very ill-conditioned);
               = N+2: after reordering, roundoff changed values of
                      some complex eigenvalues so that leading
                      eigenvalues in the Schur form no longer satisfy
                      SELECT = .TRUE..  This could also be caused by
                      underflow due to scaling.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 195 of file zgees.f.

197*
198* -- LAPACK driver routine --
199* -- LAPACK is a software package provided by Univ. of Tennessee, --
200* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
201*
202* .. Scalar Arguments ..
203 CHARACTER JOBVS, SORT
204 INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
205* ..
206* .. Array Arguments ..
207 LOGICAL BWORK( * )
208 DOUBLE PRECISION RWORK( * )
209 COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
210* ..
211* .. Function Arguments ..
212 LOGICAL SELECT
213 EXTERNAL SELECT
214* ..
215*
216* =====================================================================
217*
218* .. Parameters ..
219 DOUBLE PRECISION ZERO, ONE
220 parameter( zero = 0.0d0, one = 1.0d0 )
221* ..
222* .. Local Scalars ..
223 LOGICAL LQUERY, SCALEA, WANTST, WANTVS
224 INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
225 $ ITAU, IWRK, MAXWRK, MINWRK
226 DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
227* ..
228* .. Local Arrays ..
229 DOUBLE PRECISION DUM( 1 )
230* ..
231* .. External Subroutines ..
232 EXTERNAL xerbla, zcopy, zgebak, zgebal, zgehrd,
234* ..
235* .. External Functions ..
236 LOGICAL LSAME
237 INTEGER ILAENV
238 DOUBLE PRECISION DLAMCH, ZLANGE
239 EXTERNAL lsame, ilaenv, dlamch, zlange
240* ..
241* .. Intrinsic Functions ..
242 INTRINSIC max, sqrt
243* ..
244* .. Executable Statements ..
245*
246* Test the input arguments
247*
248 info = 0
249 lquery = ( lwork.EQ.-1 )
250 wantvs = lsame( jobvs, 'V' )
251 wantst = lsame( sort, 'S' )
252 IF( ( .NOT.wantvs ) .AND. ( .NOT.lsame( jobvs, 'N' ) ) ) THEN
253 info = -1
254 ELSE IF( ( .NOT.wantst ) .AND. ( .NOT.lsame( sort, 'N' ) ) ) THEN
255 info = -2
256 ELSE IF( n.LT.0 ) THEN
257 info = -4
258 ELSE IF( lda.LT.max( 1, n ) ) THEN
259 info = -6
260 ELSE IF( ldvs.LT.1 .OR. ( wantvs .AND. ldvs.LT.n ) ) THEN
261 info = -10
262 END IF
263*
264* Compute workspace
265* (Note: Comments in the code beginning "Workspace:" describe the
266* minimal amount of workspace needed at that point in the code,
267* as well as the preferred amount for good performance.
268* CWorkspace refers to complex workspace, and RWorkspace to real
269* workspace. NB refers to the optimal block size for the
270* immediately following subroutine, as returned by ILAENV.
271* HSWORK refers to the workspace preferred by ZHSEQR, as
272* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
273* the worst case.)
274*
275 IF( info.EQ.0 ) THEN
276 IF( n.EQ.0 ) THEN
277 minwrk = 1
278 maxwrk = 1
279 ELSE
280 maxwrk = n + n*ilaenv( 1, 'ZGEHRD', ' ', n, 1, n, 0 )
281 minwrk = 2*n
282*
283 CALL zhseqr( 'S', jobvs, n, 1, n, a, lda, w, vs, ldvs,
284 $ work, -1, ieval )
285 hswork = int( work( 1 ) )
286*
287 IF( .NOT.wantvs ) THEN
288 maxwrk = max( maxwrk, hswork )
289 ELSE
290 maxwrk = max( maxwrk, n + ( n - 1 )*ilaenv( 1, 'ZUNGHR',
291 $ ' ', n, 1, n, -1 ) )
292 maxwrk = max( maxwrk, hswork )
293 END IF
294 END IF
295 work( 1 ) = maxwrk
296*
297 IF( lwork.LT.minwrk .AND. .NOT.lquery ) THEN
298 info = -12
299 END IF
300 END IF
301*
302 IF( info.NE.0 ) THEN
303 CALL xerbla( 'ZGEES ', -info )
304 RETURN
305 ELSE IF( lquery ) THEN
306 RETURN
307 END IF
308*
309* Quick return if possible
310*
311 IF( n.EQ.0 ) THEN
312 sdim = 0
313 RETURN
314 END IF
315*
316* Get machine constants
317*
318 eps = dlamch( 'P' )
319 smlnum = dlamch( 'S' )
320 bignum = one / smlnum
321 smlnum = sqrt( smlnum ) / eps
322 bignum = one / smlnum
323*
324* Scale A if max element outside range [SMLNUM,BIGNUM]
325*
326 anrm = zlange( 'M', n, n, a, lda, dum )
327 scalea = .false.
328 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
329 scalea = .true.
330 cscale = smlnum
331 ELSE IF( anrm.GT.bignum ) THEN
332 scalea = .true.
333 cscale = bignum
334 END IF
335 IF( scalea )
336 $ CALL zlascl( 'G', 0, 0, anrm, cscale, n, n, a, lda, ierr )
337*
338* Permute the matrix to make it more nearly triangular
339* (CWorkspace: none)
340* (RWorkspace: need N)
341*
342 ibal = 1
343 CALL zgebal( 'P', n, a, lda, ilo, ihi, rwork( ibal ), ierr )
344*
345* Reduce to upper Hessenberg form
346* (CWorkspace: need 2*N, prefer N+N*NB)
347* (RWorkspace: none)
348*
349 itau = 1
350 iwrk = n + itau
351 CALL zgehrd( n, ilo, ihi, a, lda, work( itau ), work( iwrk ),
352 $ lwork-iwrk+1, ierr )
353*
354 IF( wantvs ) THEN
355*
356* Copy Householder vectors to VS
357*
358 CALL zlacpy( 'L', n, n, a, lda, vs, ldvs )
359*
360* Generate unitary matrix in VS
361* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
362* (RWorkspace: none)
363*
364 CALL zunghr( n, ilo, ihi, vs, ldvs, work( itau ), work( iwrk ),
365 $ lwork-iwrk+1, ierr )
366 END IF
367*
368 sdim = 0
369*
370* Perform QR iteration, accumulating Schur vectors in VS if desired
371* (CWorkspace: need 1, prefer HSWORK (see comments) )
372* (RWorkspace: none)
373*
374 iwrk = itau
375 CALL zhseqr( 'S', jobvs, n, ilo, ihi, a, lda, w, vs, ldvs,
376 $ work( iwrk ), lwork-iwrk+1, ieval )
377 IF( ieval.GT.0 )
378 $ info = ieval
379*
380* Sort eigenvalues if desired
381*
382 IF( wantst .AND. info.EQ.0 ) THEN
383 IF( scalea )
384 $ CALL zlascl( 'G', 0, 0, cscale, anrm, n, 1, w, n, ierr )
385 DO 10 i = 1, n
386 bwork( i ) = SELECT( w( i ) )
387 10 CONTINUE
388*
389* Reorder eigenvalues and transform Schur vectors
390* (CWorkspace: none)
391* (RWorkspace: none)
392*
393 CALL ztrsen( 'N', jobvs, bwork, n, a, lda, vs, ldvs, w, sdim,
394 $ s, sep, work( iwrk ), lwork-iwrk+1, icond )
395 END IF
396*
397 IF( wantvs ) THEN
398*
399* Undo balancing
400* (CWorkspace: none)
401* (RWorkspace: need N)
402*
403 CALL zgebak( 'P', 'R', n, ilo, ihi, rwork( ibal ), n, vs, ldvs,
404 $ ierr )
405 END IF
406*
407 IF( scalea ) THEN
408*
409* Undo scaling for the Schur form of A
410*
411 CALL zlascl( 'U', 0, 0, cscale, anrm, n, n, a, lda, ierr )
412 CALL zcopy( n, a, lda+1, w, 1 )
413 END IF
414*
415 work( 1 ) = maxwrk
416 RETURN
417*
418* End of ZGEES
419*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
ZGEBAK
Definition zgebak.f:131
subroutine zgebal(job, n, a, lda, ilo, ihi, scale, info)
ZGEBAL
Definition zgebal.f:165
subroutine zgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
ZGEHRD
Definition zgehrd.f:167
subroutine zhseqr(job, compz, n, ilo, ihi, h, ldh, w, z, ldz, work, lwork, info)
ZHSEQR
Definition zhseqr.f:299
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlange(norm, m, n, a, lda, work)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlange.f:115
subroutine zlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition zlascl.f:143
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ztrsen(job, compq, select, n, t, ldt, q, ldq, w, m, s, sep, work, lwork, info)
ZTRSEN
Definition ztrsen.f:264
subroutine zunghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
ZUNGHR
Definition zunghr.f:126
Here is the call graph for this function:
Here is the caller graph for this function: