LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zgees.f
Go to the documentation of this file.
1*> \brief <b> ZGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGEES + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgees.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgees.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgees.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
22* LDVS, WORK, LWORK, RWORK, BWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER JOBVS, SORT
26* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
27* ..
28* .. Array Arguments ..
29* LOGICAL BWORK( * )
30* DOUBLE PRECISION RWORK( * )
31* COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
32* ..
33* .. Function Arguments ..
34* LOGICAL SELECT
35* EXTERNAL SELECT
36* ..
37*
38*
39*> \par Purpose:
40* =============
41*>
42*> \verbatim
43*>
44*> ZGEES computes for an N-by-N complex nonsymmetric matrix A, the
45*> eigenvalues, the Schur form T, and, optionally, the matrix of Schur
46*> vectors Z. This gives the Schur factorization A = Z*T*(Z**H).
47*>
48*> Optionally, it also orders the eigenvalues on the diagonal of the
49*> Schur form so that selected eigenvalues are at the top left.
50*> The leading columns of Z then form an orthonormal basis for the
51*> invariant subspace corresponding to the selected eigenvalues.
52*>
53*> A complex matrix is in Schur form if it is upper triangular.
54*> \endverbatim
55*
56* Arguments:
57* ==========
58*
59*> \param[in] JOBVS
60*> \verbatim
61*> JOBVS is CHARACTER*1
62*> = 'N': Schur vectors are not computed;
63*> = 'V': Schur vectors are computed.
64*> \endverbatim
65*>
66*> \param[in] SORT
67*> \verbatim
68*> SORT is CHARACTER*1
69*> Specifies whether or not to order the eigenvalues on the
70*> diagonal of the Schur form.
71*> = 'N': Eigenvalues are not ordered:
72*> = 'S': Eigenvalues are ordered (see SELECT).
73*> \endverbatim
74*>
75*> \param[in] SELECT
76*> \verbatim
77*> SELECT is a LOGICAL FUNCTION of one COMPLEX*16 argument
78*> SELECT must be declared EXTERNAL in the calling subroutine.
79*> If SORT = 'S', SELECT is used to select eigenvalues to order
80*> to the top left of the Schur form.
81*> IF SORT = 'N', SELECT is not referenced.
82*> The eigenvalue W(j) is selected if SELECT(W(j)) is true.
83*> \endverbatim
84*>
85*> \param[in] N
86*> \verbatim
87*> N is INTEGER
88*> The order of the matrix A. N >= 0.
89*> \endverbatim
90*>
91*> \param[in,out] A
92*> \verbatim
93*> A is COMPLEX*16 array, dimension (LDA,N)
94*> On entry, the N-by-N matrix A.
95*> On exit, A has been overwritten by its Schur form T.
96*> \endverbatim
97*>
98*> \param[in] LDA
99*> \verbatim
100*> LDA is INTEGER
101*> The leading dimension of the array A. LDA >= max(1,N).
102*> \endverbatim
103*>
104*> \param[out] SDIM
105*> \verbatim
106*> SDIM is INTEGER
107*> If SORT = 'N', SDIM = 0.
108*> If SORT = 'S', SDIM = number of eigenvalues for which
109*> SELECT is true.
110*> \endverbatim
111*>
112*> \param[out] W
113*> \verbatim
114*> W is COMPLEX*16 array, dimension (N)
115*> W contains the computed eigenvalues, in the same order that
116*> they appear on the diagonal of the output Schur form T.
117*> \endverbatim
118*>
119*> \param[out] VS
120*> \verbatim
121*> VS is COMPLEX*16 array, dimension (LDVS,N)
122*> If JOBVS = 'V', VS contains the unitary matrix Z of Schur
123*> vectors.
124*> If JOBVS = 'N', VS is not referenced.
125*> \endverbatim
126*>
127*> \param[in] LDVS
128*> \verbatim
129*> LDVS is INTEGER
130*> The leading dimension of the array VS. LDVS >= 1; if
131*> JOBVS = 'V', LDVS >= N.
132*> \endverbatim
133*>
134*> \param[out] WORK
135*> \verbatim
136*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
137*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
138*> \endverbatim
139*>
140*> \param[in] LWORK
141*> \verbatim
142*> LWORK is INTEGER
143*> The dimension of the array WORK. LWORK >= max(1,2*N).
144*> For good performance, LWORK must generally be larger.
145*>
146*> If LWORK = -1, then a workspace query is assumed; the routine
147*> only calculates the optimal size of the WORK array, returns
148*> this value as the first entry of the WORK array, and no error
149*> message related to LWORK is issued by XERBLA.
150*> \endverbatim
151*>
152*> \param[out] RWORK
153*> \verbatim
154*> RWORK is DOUBLE PRECISION array, dimension (N)
155*> \endverbatim
156*>
157*> \param[out] BWORK
158*> \verbatim
159*> BWORK is LOGICAL array, dimension (N)
160*> Not referenced if SORT = 'N'.
161*> \endverbatim
162*>
163*> \param[out] INFO
164*> \verbatim
165*> INFO is INTEGER
166*> = 0: successful exit
167*> < 0: if INFO = -i, the i-th argument had an illegal value.
168*> > 0: if INFO = i, and i is
169*> <= N: the QR algorithm failed to compute all the
170*> eigenvalues; elements 1:ILO-1 and i+1:N of W
171*> contain those eigenvalues which have converged;
172*> if JOBVS = 'V', VS contains the matrix which
173*> reduces A to its partially converged Schur form.
174*> = N+1: the eigenvalues could not be reordered because
175*> some eigenvalues were too close to separate (the
176*> problem is very ill-conditioned);
177*> = N+2: after reordering, roundoff changed values of
178*> some complex eigenvalues so that leading
179*> eigenvalues in the Schur form no longer satisfy
180*> SELECT = .TRUE.. This could also be caused by
181*> underflow due to scaling.
182*> \endverbatim
183*
184* Authors:
185* ========
186*
187*> \author Univ. of Tennessee
188*> \author Univ. of California Berkeley
189*> \author Univ. of Colorado Denver
190*> \author NAG Ltd.
191*
192*> \ingroup complex16GEeigen
193*
194* =====================================================================
195 SUBROUTINE zgees( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
196 $ LDVS, WORK, LWORK, RWORK, BWORK, INFO )
197*
198* -- LAPACK driver routine --
199* -- LAPACK is a software package provided by Univ. of Tennessee, --
200* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
201*
202* .. Scalar Arguments ..
203 CHARACTER JOBVS, SORT
204 INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
205* ..
206* .. Array Arguments ..
207 LOGICAL BWORK( * )
208 DOUBLE PRECISION RWORK( * )
209 COMPLEX*16 A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
210* ..
211* .. Function Arguments ..
212 LOGICAL SELECT
213 EXTERNAL SELECT
214* ..
215*
216* =====================================================================
217*
218* .. Parameters ..
219 DOUBLE PRECISION ZERO, ONE
220 parameter( zero = 0.0d0, one = 1.0d0 )
221* ..
222* .. Local Scalars ..
223 LOGICAL LQUERY, SCALEA, WANTST, WANTVS
224 INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
225 $ itau, iwrk, maxwrk, minwrk
226 DOUBLE PRECISION ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
227* ..
228* .. Local Arrays ..
229 DOUBLE PRECISION DUM( 1 )
230* ..
231* .. External Subroutines ..
232 EXTERNAL dlabad, xerbla, zcopy, zgebak, zgebal, zgehrd,
234* ..
235* .. External Functions ..
236 LOGICAL LSAME
237 INTEGER ILAENV
238 DOUBLE PRECISION DLAMCH, ZLANGE
239 EXTERNAL lsame, ilaenv, dlamch, zlange
240* ..
241* .. Intrinsic Functions ..
242 INTRINSIC max, sqrt
243* ..
244* .. Executable Statements ..
245*
246* Test the input arguments
247*
248 info = 0
249 lquery = ( lwork.EQ.-1 )
250 wantvs = lsame( jobvs, 'V' )
251 wantst = lsame( sort, 'S' )
252 IF( ( .NOT.wantvs ) .AND. ( .NOT.lsame( jobvs, 'N' ) ) ) THEN
253 info = -1
254 ELSE IF( ( .NOT.wantst ) .AND. ( .NOT.lsame( sort, 'N' ) ) ) THEN
255 info = -2
256 ELSE IF( n.LT.0 ) THEN
257 info = -4
258 ELSE IF( lda.LT.max( 1, n ) ) THEN
259 info = -6
260 ELSE IF( ldvs.LT.1 .OR. ( wantvs .AND. ldvs.LT.n ) ) THEN
261 info = -10
262 END IF
263*
264* Compute workspace
265* (Note: Comments in the code beginning "Workspace:" describe the
266* minimal amount of workspace needed at that point in the code,
267* as well as the preferred amount for good performance.
268* CWorkspace refers to complex workspace, and RWorkspace to real
269* workspace. NB refers to the optimal block size for the
270* immediately following subroutine, as returned by ILAENV.
271* HSWORK refers to the workspace preferred by ZHSEQR, as
272* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
273* the worst case.)
274*
275 IF( info.EQ.0 ) THEN
276 IF( n.EQ.0 ) THEN
277 minwrk = 1
278 maxwrk = 1
279 ELSE
280 maxwrk = n + n*ilaenv( 1, 'ZGEHRD', ' ', n, 1, n, 0 )
281 minwrk = 2*n
282*
283 CALL zhseqr( 'S', jobvs, n, 1, n, a, lda, w, vs, ldvs,
284 $ work, -1, ieval )
285 hswork = int( work( 1 ) )
286*
287 IF( .NOT.wantvs ) THEN
288 maxwrk = max( maxwrk, hswork )
289 ELSE
290 maxwrk = max( maxwrk, n + ( n - 1 )*ilaenv( 1, 'ZUNGHR',
291 $ ' ', n, 1, n, -1 ) )
292 maxwrk = max( maxwrk, hswork )
293 END IF
294 END IF
295 work( 1 ) = maxwrk
296*
297 IF( lwork.LT.minwrk .AND. .NOT.lquery ) THEN
298 info = -12
299 END IF
300 END IF
301*
302 IF( info.NE.0 ) THEN
303 CALL xerbla( 'ZGEES ', -info )
304 RETURN
305 ELSE IF( lquery ) THEN
306 RETURN
307 END IF
308*
309* Quick return if possible
310*
311 IF( n.EQ.0 ) THEN
312 sdim = 0
313 RETURN
314 END IF
315*
316* Get machine constants
317*
318 eps = dlamch( 'P' )
319 smlnum = dlamch( 'S' )
320 bignum = one / smlnum
321 CALL dlabad( smlnum, bignum )
322 smlnum = sqrt( smlnum ) / eps
323 bignum = one / smlnum
324*
325* Scale A if max element outside range [SMLNUM,BIGNUM]
326*
327 anrm = zlange( 'M', n, n, a, lda, dum )
328 scalea = .false.
329 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
330 scalea = .true.
331 cscale = smlnum
332 ELSE IF( anrm.GT.bignum ) THEN
333 scalea = .true.
334 cscale = bignum
335 END IF
336 IF( scalea )
337 $ CALL zlascl( 'G', 0, 0, anrm, cscale, n, n, a, lda, ierr )
338*
339* Permute the matrix to make it more nearly triangular
340* (CWorkspace: none)
341* (RWorkspace: need N)
342*
343 ibal = 1
344 CALL zgebal( 'P', n, a, lda, ilo, ihi, rwork( ibal ), ierr )
345*
346* Reduce to upper Hessenberg form
347* (CWorkspace: need 2*N, prefer N+N*NB)
348* (RWorkspace: none)
349*
350 itau = 1
351 iwrk = n + itau
352 CALL zgehrd( n, ilo, ihi, a, lda, work( itau ), work( iwrk ),
353 $ lwork-iwrk+1, ierr )
354*
355 IF( wantvs ) THEN
356*
357* Copy Householder vectors to VS
358*
359 CALL zlacpy( 'L', n, n, a, lda, vs, ldvs )
360*
361* Generate unitary matrix in VS
362* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
363* (RWorkspace: none)
364*
365 CALL zunghr( n, ilo, ihi, vs, ldvs, work( itau ), work( iwrk ),
366 $ lwork-iwrk+1, ierr )
367 END IF
368*
369 sdim = 0
370*
371* Perform QR iteration, accumulating Schur vectors in VS if desired
372* (CWorkspace: need 1, prefer HSWORK (see comments) )
373* (RWorkspace: none)
374*
375 iwrk = itau
376 CALL zhseqr( 'S', jobvs, n, ilo, ihi, a, lda, w, vs, ldvs,
377 $ work( iwrk ), lwork-iwrk+1, ieval )
378 IF( ieval.GT.0 )
379 $ info = ieval
380*
381* Sort eigenvalues if desired
382*
383 IF( wantst .AND. info.EQ.0 ) THEN
384 IF( scalea )
385 $ CALL zlascl( 'G', 0, 0, cscale, anrm, n, 1, w, n, ierr )
386 DO 10 i = 1, n
387 bwork( i ) = SELECT( w( i ) )
388 10 CONTINUE
389*
390* Reorder eigenvalues and transform Schur vectors
391* (CWorkspace: none)
392* (RWorkspace: none)
393*
394 CALL ztrsen( 'N', jobvs, bwork, n, a, lda, vs, ldvs, w, sdim,
395 $ s, sep, work( iwrk ), lwork-iwrk+1, icond )
396 END IF
397*
398 IF( wantvs ) THEN
399*
400* Undo balancing
401* (CWorkspace: none)
402* (RWorkspace: need N)
403*
404 CALL zgebak( 'P', 'R', n, ilo, ihi, rwork( ibal ), n, vs, ldvs,
405 $ ierr )
406 END IF
407*
408 IF( scalea ) THEN
409*
410* Undo scaling for the Schur form of A
411*
412 CALL zlascl( 'U', 0, 0, cscale, anrm, n, n, a, lda, ierr )
413 CALL zcopy( n, a, lda+1, w, 1 )
414 END IF
415*
416 work( 1 ) = maxwrk
417 RETURN
418*
419* End of ZGEES
420*
421 END
subroutine dlabad(SMALL, LARGE)
DLABAD
Definition: dlabad.f:74
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
Definition: zcopy.f:81
subroutine zgebal(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)
ZGEBAL
Definition: zgebal.f:162
subroutine zgehrd(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
ZGEHRD
Definition: zgehrd.f:167
subroutine zgebak(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)
ZGEBAK
Definition: zgebak.f:131
subroutine zgees(JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS, LDVS, WORK, LWORK, RWORK, BWORK, INFO)
ZGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE m...
Definition: zgees.f:197
subroutine zlascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
ZLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: zlascl.f:143
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zhseqr(JOB, COMPZ, N, ILO, IHI, H, LDH, W, Z, LDZ, WORK, LWORK, INFO)
ZHSEQR
Definition: zhseqr.f:299
subroutine ztrsen(JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, W, M, S, SEP, WORK, LWORK, INFO)
ZTRSEN
Definition: ztrsen.f:264
subroutine zunghr(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
ZUNGHR
Definition: zunghr.f:126