LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cchkpp.f
Go to the documentation of this file.
1*> \brief \b CCHKPP
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CCHKPP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
12* NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK,
13* NOUT )
14*
15* .. Scalar Arguments ..
16* LOGICAL TSTERR
17* INTEGER NMAX, NN, NNS, NOUT
18* REAL THRESH
19* ..
20* .. Array Arguments ..
21* LOGICAL DOTYPE( * )
22* INTEGER NSVAL( * ), NVAL( * )
23* REAL RWORK( * )
24* COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
25* $ WORK( * ), X( * ), XACT( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> CCHKPP tests CPPTRF, -TRI, -TRS, -RFS, and -CON
35*> \endverbatim
36*
37* Arguments:
38* ==========
39*
40*> \param[in] DOTYPE
41*> \verbatim
42*> DOTYPE is LOGICAL array, dimension (NTYPES)
43*> The matrix types to be used for testing. Matrices of type j
44*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46*> \endverbatim
47*>
48*> \param[in] NN
49*> \verbatim
50*> NN is INTEGER
51*> The number of values of N contained in the vector NVAL.
52*> \endverbatim
53*>
54*> \param[in] NVAL
55*> \verbatim
56*> NVAL is INTEGER array, dimension (NN)
57*> The values of the matrix dimension N.
58*> \endverbatim
59*>
60*> \param[in] NNS
61*> \verbatim
62*> NNS is INTEGER
63*> The number of values of NRHS contained in the vector NSVAL.
64*> \endverbatim
65*>
66*> \param[in] NSVAL
67*> \verbatim
68*> NSVAL is INTEGER array, dimension (NNS)
69*> The values of the number of right hand sides NRHS.
70*> \endverbatim
71*>
72*> \param[in] THRESH
73*> \verbatim
74*> THRESH is REAL
75*> The threshold value for the test ratios. A result is
76*> included in the output file if RESULT >= THRESH. To have
77*> every test ratio printed, use THRESH = 0.
78*> \endverbatim
79*>
80*> \param[in] TSTERR
81*> \verbatim
82*> TSTERR is LOGICAL
83*> Flag that indicates whether error exits are to be tested.
84*> \endverbatim
85*>
86*> \param[in] NMAX
87*> \verbatim
88*> NMAX is INTEGER
89*> The maximum value permitted for N, used in dimensioning the
90*> work arrays.
91*> \endverbatim
92*>
93*> \param[out] A
94*> \verbatim
95*> A is COMPLEX array, dimension
96*> (NMAX*(NMAX+1)/2)
97*> \endverbatim
98*>
99*> \param[out] AFAC
100*> \verbatim
101*> AFAC is COMPLEX array, dimension
102*> (NMAX*(NMAX+1)/2)
103*> \endverbatim
104*>
105*> \param[out] AINV
106*> \verbatim
107*> AINV is COMPLEX array, dimension
108*> (NMAX*(NMAX+1)/2)
109*> \endverbatim
110*>
111*> \param[out] B
112*> \verbatim
113*> B is COMPLEX array, dimension (NMAX*NSMAX)
114*> where NSMAX is the largest entry in NSVAL.
115*> \endverbatim
116*>
117*> \param[out] X
118*> \verbatim
119*> X is COMPLEX array, dimension (NMAX*NSMAX)
120*> \endverbatim
121*>
122*> \param[out] XACT
123*> \verbatim
124*> XACT is COMPLEX array, dimension (NMAX*NSMAX)
125*> \endverbatim
126*>
127*> \param[out] WORK
128*> \verbatim
129*> WORK is COMPLEX array, dimension
130*> (NMAX*max(3,NSMAX))
131*> \endverbatim
132*>
133*> \param[out] RWORK
134*> \verbatim
135*> RWORK is REAL array, dimension
136*> (max(NMAX,2*NSMAX))
137*> \endverbatim
138*>
139*> \param[in] NOUT
140*> \verbatim
141*> NOUT is INTEGER
142*> The unit number for output.
143*> \endverbatim
144*
145* Authors:
146* ========
147*
148*> \author Univ. of Tennessee
149*> \author Univ. of California Berkeley
150*> \author Univ. of Colorado Denver
151*> \author NAG Ltd.
152*
153*> \ingroup complex_lin
154*
155* =====================================================================
156 SUBROUTINE cchkpp( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
157 $ NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK,
158 $ NOUT )
159*
160* -- LAPACK test routine --
161* -- LAPACK is a software package provided by Univ. of Tennessee, --
162* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
163*
164* .. Scalar Arguments ..
165 LOGICAL TSTERR
166 INTEGER NMAX, NN, NNS, NOUT
167 REAL THRESH
168* ..
169* .. Array Arguments ..
170 LOGICAL DOTYPE( * )
171 INTEGER NSVAL( * ), NVAL( * )
172 REAL RWORK( * )
173 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
174 $ work( * ), x( * ), xact( * )
175* ..
176*
177* =====================================================================
178*
179* .. Parameters ..
180 REAL ZERO
181 PARAMETER ( ZERO = 0.0e+0 )
182 INTEGER NTYPES
183 parameter( ntypes = 9 )
184 INTEGER NTESTS
185 parameter( ntests = 8 )
186* ..
187* .. Local Scalars ..
188 LOGICAL ZEROT
189 CHARACTER DIST, PACKIT, TYPE, UPLO, XTYPE
190 CHARACTER*3 PATH
191 INTEGER I, IMAT, IN, INFO, IOFF, IRHS, IUPLO, IZERO, K,
192 $ kl, ku, lda, mode, n, nerrs, nfail, nimat, npp,
193 $ nrhs, nrun
194 REAL ANORM, CNDNUM, RCOND, RCONDC
195* ..
196* .. Local Arrays ..
197 CHARACTER PACKS( 2 ), UPLOS( 2 )
198 INTEGER ISEED( 4 ), ISEEDY( 4 )
199 REAL RESULT( NTESTS )
200* ..
201* .. External Functions ..
202 REAL CLANHP, SGET06
203 EXTERNAL CLANHP, SGET06
204* ..
205* .. External Subroutines ..
206 EXTERNAL alaerh, alahd, alasum, ccopy, cerrpo, cget04,
209 $ cpptri, cpptrs
210* ..
211* .. Scalars in Common ..
212 LOGICAL LERR, OK
213 CHARACTER*32 SRNAMT
214 INTEGER INFOT, NUNIT
215* ..
216* .. Common blocks ..
217 COMMON / infoc / infot, nunit, ok, lerr
218 COMMON / srnamc / srnamt
219* ..
220* .. Intrinsic Functions ..
221 INTRINSIC max
222* ..
223* .. Data statements ..
224 DATA iseedy / 1988, 1989, 1990, 1991 /
225 DATA uplos / 'U', 'L' / , packs / 'C', 'R' /
226* ..
227* .. Executable Statements ..
228*
229* Initialize constants and the random number seed.
230*
231 path( 1: 1 ) = 'Complex precision'
232 path( 2: 3 ) = 'PP'
233 nrun = 0
234 nfail = 0
235 nerrs = 0
236 DO 10 i = 1, 4
237 iseed( i ) = iseedy( i )
238 10 CONTINUE
239*
240* Test the error exits
241*
242 IF( tsterr )
243 $ CALL cerrpo( path, nout )
244 infot = 0
245*
246* Do for each value of N in NVAL
247*
248 DO 110 in = 1, nn
249 n = nval( in )
250 lda = max( n, 1 )
251 xtype = 'N'
252 nimat = ntypes
253 IF( n.LE.0 )
254 $ nimat = 1
255*
256 DO 100 imat = 1, nimat
257*
258* Do the tests only if DOTYPE( IMAT ) is true.
259*
260 IF( .NOT.dotype( imat ) )
261 $ GO TO 100
262*
263* Skip types 3, 4, or 5 if the matrix size is too small.
264*
265 zerot = imat.GE.3 .AND. imat.LE.5
266 IF( zerot .AND. n.LT.imat-2 )
267 $ GO TO 100
268*
269* Do first for UPLO = 'U', then for UPLO = 'L'
270*
271 DO 90 iuplo = 1, 2
272 uplo = uplos( iuplo )
273 packit = packs( iuplo )
274*
275* Set up parameters with CLATB4 and generate a test matrix
276* with CLATMS.
277*
278 CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
279 $ cndnum, dist )
280*
281 srnamt = 'CLATMS'
282 CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
283 $ cndnum, anorm, kl, ku, packit, a, lda, work,
284 $ info )
285*
286* Check error code from CLATMS.
287*
288 IF( info.NE.0 ) THEN
289 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
290 $ -1, -1, imat, nfail, nerrs, nout )
291 GO TO 90
292 END IF
293*
294* For types 3-5, zero one row and column of the matrix to
295* test that INFO is returned correctly.
296*
297 IF( zerot ) THEN
298 IF( imat.EQ.3 ) THEN
299 izero = 1
300 ELSE IF( imat.EQ.4 ) THEN
301 izero = n
302 ELSE
303 izero = n / 2 + 1
304 END IF
305*
306* Set row and column IZERO of A to 0.
307*
308 IF( iuplo.EQ.1 ) THEN
309 ioff = ( izero-1 )*izero / 2
310 DO 20 i = 1, izero - 1
311 a( ioff+i ) = zero
312 20 CONTINUE
313 ioff = ioff + izero
314 DO 30 i = izero, n
315 a( ioff ) = zero
316 ioff = ioff + i
317 30 CONTINUE
318 ELSE
319 ioff = izero
320 DO 40 i = 1, izero - 1
321 a( ioff ) = zero
322 ioff = ioff + n - i
323 40 CONTINUE
324 ioff = ioff - izero
325 DO 50 i = izero, n
326 a( ioff+i ) = zero
327 50 CONTINUE
328 END IF
329 ELSE
330 izero = 0
331 END IF
332*
333* Set the imaginary part of the diagonals.
334*
335 IF( iuplo.EQ.1 ) THEN
336 CALL claipd( n, a, 2, 1 )
337 ELSE
338 CALL claipd( n, a, n, -1 )
339 END IF
340*
341* Compute the L*L' or U'*U factorization of the matrix.
342*
343 npp = n*( n+1 ) / 2
344 CALL ccopy( npp, a, 1, afac, 1 )
345 srnamt = 'CPPTRF'
346 CALL cpptrf( uplo, n, afac, info )
347*
348* Check error code from CPPTRF.
349*
350 IF( info.NE.izero ) THEN
351 CALL alaerh( path, 'CPPTRF', info, izero, uplo, n, n,
352 $ -1, -1, -1, imat, nfail, nerrs, nout )
353 GO TO 90
354 END IF
355*
356* Skip the tests if INFO is not 0.
357*
358 IF( info.NE.0 )
359 $ GO TO 90
360*
361*+ TEST 1
362* Reconstruct matrix from factors and compute residual.
363*
364 CALL ccopy( npp, afac, 1, ainv, 1 )
365 CALL cppt01( uplo, n, a, ainv, rwork, result( 1 ) )
366*
367*+ TEST 2
368* Form the inverse and compute the residual.
369*
370 CALL ccopy( npp, afac, 1, ainv, 1 )
371 srnamt = 'CPPTRI'
372 CALL cpptri( uplo, n, ainv, info )
373*
374* Check error code from CPPTRI.
375*
376 IF( info.NE.0 )
377 $ CALL alaerh( path, 'CPPTRI', info, 0, uplo, n, n, -1,
378 $ -1, -1, imat, nfail, nerrs, nout )
379*
380 CALL cppt03( uplo, n, a, ainv, work, lda, rwork, rcondc,
381 $ result( 2 ) )
382*
383* Print information about the tests that did not pass
384* the threshold.
385*
386 DO 60 k = 1, 2
387 IF( result( k ).GE.thresh ) THEN
388 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
389 $ CALL alahd( nout, path )
390 WRITE( nout, fmt = 9999 )uplo, n, imat, k,
391 $ result( k )
392 nfail = nfail + 1
393 END IF
394 60 CONTINUE
395 nrun = nrun + 2
396*
397 DO 80 irhs = 1, nns
398 nrhs = nsval( irhs )
399*
400*+ TEST 3
401* Solve and compute residual for A * X = B.
402*
403 srnamt = 'CLARHS'
404 CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
405 $ nrhs, a, lda, xact, lda, b, lda, iseed,
406 $ info )
407 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
408*
409 srnamt = 'CPPTRS'
410 CALL cpptrs( uplo, n, nrhs, afac, x, lda, info )
411*
412* Check error code from CPPTRS.
413*
414 IF( info.NE.0 )
415 $ CALL alaerh( path, 'CPPTRS', info, 0, uplo, n, n,
416 $ -1, -1, nrhs, imat, nfail, nerrs,
417 $ nout )
418*
419 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
420 CALL cppt02( uplo, n, nrhs, a, x, lda, work, lda,
421 $ rwork, result( 3 ) )
422*
423*+ TEST 4
424* Check solution from generated exact solution.
425*
426 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
427 $ result( 4 ) )
428*
429*+ TESTS 5, 6, and 7
430* Use iterative refinement to improve the solution.
431*
432 srnamt = 'CPPRFS'
433 CALL cpprfs( uplo, n, nrhs, a, afac, b, lda, x, lda,
434 $ rwork, rwork( nrhs+1 ), work,
435 $ rwork( 2*nrhs+1 ), info )
436*
437* Check error code from CPPRFS.
438*
439 IF( info.NE.0 )
440 $ CALL alaerh( path, 'CPPRFS', info, 0, uplo, n, n,
441 $ -1, -1, nrhs, imat, nfail, nerrs,
442 $ nout )
443*
444 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
445 $ result( 5 ) )
446 CALL cppt05( uplo, n, nrhs, a, b, lda, x, lda, xact,
447 $ lda, rwork, rwork( nrhs+1 ),
448 $ result( 6 ) )
449*
450* Print information about the tests that did not pass
451* the threshold.
452*
453 DO 70 k = 3, 7
454 IF( result( k ).GE.thresh ) THEN
455 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
456 $ CALL alahd( nout, path )
457 WRITE( nout, fmt = 9998 )uplo, n, nrhs, imat,
458 $ k, result( k )
459 nfail = nfail + 1
460 END IF
461 70 CONTINUE
462 nrun = nrun + 5
463 80 CONTINUE
464*
465*+ TEST 8
466* Get an estimate of RCOND = 1/CNDNUM.
467*
468 anorm = clanhp( '1', uplo, n, a, rwork )
469 srnamt = 'CPPCON'
470 CALL cppcon( uplo, n, afac, anorm, rcond, work, rwork,
471 $ info )
472*
473* Check error code from CPPCON.
474*
475 IF( info.NE.0 )
476 $ CALL alaerh( path, 'CPPCON', info, 0, uplo, n, n, -1,
477 $ -1, -1, imat, nfail, nerrs, nout )
478*
479 result( 8 ) = sget06( rcond, rcondc )
480*
481* Print the test ratio if greater than or equal to THRESH.
482*
483 IF( result( 8 ).GE.thresh ) THEN
484 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
485 $ CALL alahd( nout, path )
486 WRITE( nout, fmt = 9999 )uplo, n, imat, 8,
487 $ result( 8 )
488 nfail = nfail + 1
489 END IF
490 nrun = nrun + 1
491*
492 90 CONTINUE
493 100 CONTINUE
494 110 CONTINUE
495*
496* Print a summary of the results.
497*
498 CALL alasum( path, nout, nfail, nrun, nerrs )
499*
500 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', type ', i2, ', test ',
501 $ i2, ', ratio =', g12.5 )
502 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
503 $ i2, ', test(', i2, ') =', g12.5 )
504 RETURN
505*
506* End of CCHKPP
507*
508 END
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine cchkpp(dotype, nn, nval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, nout)
CCHKPP
Definition cchkpp.f:159
subroutine cerrpo(path, nunit)
CERRPO
Definition cerrpo.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine claipd(n, a, inda, vinda)
CLAIPD
Definition claipd.f:83
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cppt01(uplo, n, a, afac, rwork, resid)
CPPT01
Definition cppt01.f:95
subroutine cppt02(uplo, n, nrhs, a, x, ldx, b, ldb, rwork, resid)
CPPT02
Definition cppt02.f:123
subroutine cppt03(uplo, n, a, ainv, work, ldwork, rwork, rcond, resid)
CPPT03
Definition cppt03.f:110
subroutine cppt05(uplo, n, nrhs, ap, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
CPPT05
Definition cppt05.f:157
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
subroutine cppcon(uplo, n, ap, anorm, rcond, work, rwork, info)
CPPCON
Definition cppcon.f:117
subroutine cpprfs(uplo, n, nrhs, ap, afp, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CPPRFS
Definition cpprfs.f:170
subroutine cpptrf(uplo, n, ap, info)
CPPTRF
Definition cpptrf.f:117
subroutine cpptri(uplo, n, ap, info)
CPPTRI
Definition cpptri.f:91
subroutine cpptrs(uplo, n, nrhs, ap, b, ldb, info)
CPPTRS
Definition cpptrs.f:106