LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
cchksy_aa_2stage.f
Go to the documentation of this file.
1 *> \brief \b CCHKSY_AA_2STAGE
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCHKSY_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL,
12 * NNS, NSVAL, THRESH, TSTERR, NMAX, A,
13 * AFAC, AINV, B, X, XACT, WORK, RWORK,
14 * IWORK, NOUT )
15 *
16 * .. Scalar Arguments ..
17 * LOGICAL TSTERR
18 * INTEGER NMAX, NN, NNB, NNS, NOUT
19 * REAL THRESH
20 * ..
21 * .. Array Arguments ..
22 * LOGICAL DOTYPE( * )
23 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
24 * REAL RWORK( * )
25 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
26 * $ WORK( * ), X( * ), XACT( * )
27 * ..
28 *
29 *
30 *> \par Purpose:
31 * =============
32 *>
33 *> \verbatim
34 *>
35 *> CCHKSY_AA_2STAGE tests CSYTRF_AA_2STAGE, -TRS_AA_2STAGE.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> \endverbatim
48 *>
49 *> \param[in] NN
50 *> \verbatim
51 *> NN is INTEGER
52 *> The number of values of N contained in the vector NVAL.
53 *> \endverbatim
54 *>
55 *> \param[in] NVAL
56 *> \verbatim
57 *> NVAL is INTEGER array, dimension (NN)
58 *> The values of the matrix dimension N.
59 *> \endverbatim
60 *>
61 *> \param[in] NNB
62 *> \verbatim
63 *> NNB is INTEGER
64 *> The number of values of NB contained in the vector NBVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] NBVAL
68 *> \verbatim
69 *> NBVAL is INTEGER array, dimension (NNB)
70 *> The values of the blocksize NB.
71 *> \endverbatim
72 *>
73 *> \param[in] NNS
74 *> \verbatim
75 *> NNS is INTEGER
76 *> The number of values of NRHS contained in the vector NSVAL.
77 *> \endverbatim
78 *>
79 *> \param[in] NSVAL
80 *> \verbatim
81 *> NSVAL is INTEGER array, dimension (NNS)
82 *> The values of the number of right hand sides NRHS.
83 *> \endverbatim
84 *>
85 *> \param[in] THRESH
86 *> \verbatim
87 *> THRESH is REAL
88 *> The threshold value for the test ratios. A result is
89 *> included in the output file if RESULT >= THRESH. To have
90 *> every test ratio printed, use THRESH = 0.
91 *> \endverbatim
92 *>
93 *> \param[in] TSTERR
94 *> \verbatim
95 *> TSTERR is LOGICAL
96 *> Flag that indicates whether error exits are to be tested.
97 *> \endverbatim
98 *>
99 *> \param[in] NMAX
100 *> \verbatim
101 *> NMAX is INTEGER
102 *> The maximum value permitted for N, used in dimensioning the
103 *> work arrays.
104 *> \endverbatim
105 *>
106 *> \param[out] A
107 *> \verbatim
108 *> A is COMPLEX array, dimension (NMAX*NMAX)
109 *> \endverbatim
110 *>
111 *> \param[out] AFAC
112 *> \verbatim
113 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
114 *> \endverbatim
115 *>
116 *> \param[out] AINV
117 *> \verbatim
118 *> AINV is COMPLEX array, dimension (NMAX*NMAX)
119 *> \endverbatim
120 *>
121 *> \param[out] B
122 *> \verbatim
123 *> B is COMPLEX array, dimension (NMAX*NSMAX)
124 *> where NSMAX is the largest entry in NSVAL.
125 *> \endverbatim
126 *>
127 *> \param[out] X
128 *> \verbatim
129 *> X is COMPLEX array, dimension (NMAX*NSMAX)
130 *> \endverbatim
131 *>
132 *> \param[out] XACT
133 *> \verbatim
134 *> XACT is COMPLEX array, dimension (NMAX*NSMAX)
135 *> \endverbatim
136 *>
137 *> \param[out] WORK
138 *> \verbatim
139 *> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
140 *> \endverbatim
141 *>
142 *> \param[out] RWORK
143 *> \verbatim
144 *> RWORK is COMPLEX array, dimension (max(NMAX,2*NSMAX))
145 *> \endverbatim
146 *>
147 *> \param[out] IWORK
148 *> \verbatim
149 *> IWORK is INTEGER array, dimension (2*NMAX)
150 *> \endverbatim
151 *>
152 *> \param[in] NOUT
153 *> \verbatim
154 *> NOUT is INTEGER
155 *> The unit number for output.
156 *> \endverbatim
157 *
158 * Authors:
159 * ========
160 *
161 *> \author Univ. of Tennessee
162 *> \author Univ. of California Berkeley
163 *> \author Univ. of Colorado Denver
164 *> \author NAG Ltd.
165 *
166 *> \ingroup complex_lin
167 *
168 * =====================================================================
169  SUBROUTINE cchksy_aa_2stage( DOTYPE, NN, NVAL, NNB, NBVAL, NNS,
170  $ NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV,
171  $ B, X, XACT, WORK, RWORK, IWORK, NOUT )
172 *
173 * -- LAPACK test routine --
174 * -- LAPACK is a software package provided by Univ. of Tennessee, --
175 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
176 *
177  IMPLICIT NONE
178 *
179 * .. Scalar Arguments ..
180  LOGICAL TSTERR
181  INTEGER NN, NNB, NNS, NMAX, NOUT
182  REAL THRESH
183 * ..
184 * .. Array Arguments ..
185  LOGICAL DOTYPE( * )
186  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
187  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
188  $ work( * ), x( * ), xact( * )
189  REAL RWORK( * )
190 * ..
191 *
192 * =====================================================================
193 *
194 * .. Parameters ..
195  COMPLEX CZERO
196  PARAMETER ( CZERO = ( 0.0e+0, 0.0e+0 ) )
197  INTEGER NTYPES
198  parameter( ntypes = 10 )
199  INTEGER NTESTS
200  parameter( ntests = 9 )
201 * ..
202 * .. Local Scalars ..
203  LOGICAL ZEROT
204  CHARACTER DIST, TYPE, UPLO, XTYPE
205  CHARACTER*3 PATH, MATPATH
206  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
207  $ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
208  $ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
209  REAL ANORM, CNDNUM
210 * ..
211 * .. Local Arrays ..
212  CHARACTER UPLOS( 2 )
213  INTEGER ISEED( 4 ), ISEEDY( 4 )
214  REAL RESULT( NTESTS )
215 * ..
216 * .. External Subroutines ..
217  EXTERNAL alaerh, alahd, alasum, cerrsy, clacpy, clarhs,
218  $ clatb4, clatms, csyt02, csyt01,
220  $ xlaenv
221 * ..
222 * .. Intrinsic Functions ..
223  INTRINSIC max, min
224 * ..
225 * .. Scalars in Common ..
226  LOGICAL LERR, OK
227  CHARACTER*32 SRNAMT
228  INTEGER INFOT, NUNIT
229 * ..
230 * .. Common blocks ..
231  COMMON / infoc / infot, nunit, ok, lerr
232  COMMON / srnamc / srnamt
233 * ..
234 * .. Data statements ..
235  DATA iseedy / 1988, 1989, 1990, 1991 /
236  DATA uplos / 'U', 'L' /
237 * ..
238 * .. Executable Statements ..
239 *
240 * Initialize constants and the random number seed.
241 *
242 * Test path
243 *
244  path( 1: 1 ) = 'Complex precision'
245  path( 2: 3 ) = 'S2'
246 *
247 * Path to generate matrices
248 *
249  matpath( 1: 1 ) = 'Complex precision'
250  matpath( 2: 3 ) = 'SY'
251  nrun = 0
252  nfail = 0
253  nerrs = 0
254  DO 10 i = 1, 4
255  iseed( i ) = iseedy( i )
256  10 CONTINUE
257 *
258 * Test the error exits
259 *
260  IF( tsterr )
261  $ CALL cerrsy( path, nout )
262  infot = 0
263 *
264 * Set the minimum block size for which the block routine should
265 * be used, which will be later returned by ILAENV
266 *
267  CALL xlaenv( 2, 2 )
268 *
269 * Do for each value of N in NVAL
270 *
271  DO 180 in = 1, nn
272  n = nval( in )
273  IF( n .GT. nmax ) THEN
274  nfail = nfail + 1
275  WRITE(nout, 9995) 'M ', n, nmax
276  GO TO 180
277  END IF
278  lda = max( n, 1 )
279  xtype = 'N'
280  nimat = ntypes
281  IF( n.LE.0 )
282  $ nimat = 1
283 *
284  izero = 0
285 *
286 * Do for each value of matrix type IMAT
287 *
288  DO 170 imat = 1, nimat
289 *
290 * Do the tests only if DOTYPE( IMAT ) is true.
291 *
292  IF( .NOT.dotype( imat ) )
293  $ GO TO 170
294 *
295 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
296 *
297  zerot = imat.GE.3 .AND. imat.LE.6
298  IF( zerot .AND. n.LT.imat-2 )
299  $ GO TO 170
300 *
301 * Do first for UPLO = 'U', then for UPLO = 'L'
302 *
303  DO 160 iuplo = 1, 2
304  uplo = uplos( iuplo )
305 *
306 * Begin generate the test matrix A.
307 *
308 *
309 * Set up parameters with CLATB4 for the matrix generator
310 * based on the type of matrix to be generated.
311 *
312  CALL clatb4( matpath, imat, n, n, TYPE, kl, ku,
313  $ anorm, mode, cndnum, dist )
314 *
315 * Generate a matrix with CLATMS.
316 *
317  srnamt = 'CLATMS'
318  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
319  $ cndnum, anorm, kl, ku, uplo, a, lda, work,
320  $ info )
321 *
322 * Check error code from CLATMS and handle error.
323 *
324  IF( info.NE.0 ) THEN
325  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
326  $ -1, -1, imat, nfail, nerrs, nout )
327 *
328 * Skip all tests for this generated matrix
329 *
330  GO TO 160
331  END IF
332 *
333 * For matrix types 3-6, zero one or more rows and
334 * columns of the matrix to test that INFO is returned
335 * correctly.
336 *
337  IF( zerot ) THEN
338  IF( imat.EQ.3 ) THEN
339  izero = 1
340  ELSE IF( imat.EQ.4 ) THEN
341  izero = n
342  ELSE
343  izero = n / 2 + 1
344  END IF
345 *
346  IF( imat.LT.6 ) THEN
347 *
348 * Set row and column IZERO to zero.
349 *
350  IF( iuplo.EQ.1 ) THEN
351  ioff = ( izero-1 )*lda
352  DO 20 i = 1, izero - 1
353  a( ioff+i ) = czero
354  20 CONTINUE
355  ioff = ioff + izero
356  DO 30 i = izero, n
357  a( ioff ) = czero
358  ioff = ioff + lda
359  30 CONTINUE
360  ELSE
361  ioff = izero
362  DO 40 i = 1, izero - 1
363  a( ioff ) = czero
364  ioff = ioff + lda
365  40 CONTINUE
366  ioff = ioff - izero
367  DO 50 i = izero, n
368  a( ioff+i ) = czero
369  50 CONTINUE
370  END IF
371  ELSE
372  IF( iuplo.EQ.1 ) THEN
373 *
374 * Set the first IZERO rows and columns to zero.
375 *
376  ioff = 0
377  DO 70 j = 1, n
378  i2 = min( j, izero )
379  DO 60 i = 1, i2
380  a( ioff+i ) = czero
381  60 CONTINUE
382  ioff = ioff + lda
383  70 CONTINUE
384  izero = 1
385  ELSE
386 *
387 * Set the last IZERO rows and columns to zero.
388 *
389  ioff = 0
390  DO 90 j = 1, n
391  i1 = max( j, izero )
392  DO 80 i = i1, n
393  a( ioff+i ) = czero
394  80 CONTINUE
395  ioff = ioff + lda
396  90 CONTINUE
397  END IF
398  END IF
399  ELSE
400  izero = 0
401  END IF
402 *
403 * End generate the test matrix A.
404 *
405 * Do for each value of NB in NBVAL
406 *
407  DO 150 inb = 1, nnb
408 *
409 * Set the optimal blocksize, which will be later
410 * returned by ILAENV.
411 *
412  nb = nbval( inb )
413  CALL xlaenv( 1, nb )
414 *
415 * Copy the test matrix A into matrix AFAC which
416 * will be factorized in place. This is needed to
417 * preserve the test matrix A for subsequent tests.
418 *
419  CALL clacpy( uplo, n, n, a, lda, afac, lda )
420 *
421 * Compute the L*D*L**T or U*D*U**T factorization of the
422 * matrix. IWORK stores details of the interchanges and
423 * the block structure of D. AINV is a work array for
424 * block factorization, LWORK is the length of AINV.
425 *
426  srnamt = 'CSYTRF_AA_2STAGE'
427  lwork = min(n*nb, 3*nmax*nmax)
428  CALL csytrf_aa_2stage( uplo, n, afac, lda,
429  $ ainv, (3*nb+1)*n,
430  $ iwork, iwork( 1+n ),
431  $ work, lwork,
432  $ info )
433 *
434 * Adjust the expected value of INFO to account for
435 * pivoting.
436 *
437  IF( izero.GT.0 ) THEN
438  j = 1
439  k = izero
440  100 CONTINUE
441  IF( j.EQ.k ) THEN
442  k = iwork( j )
443  ELSE IF( iwork( j ).EQ.k ) THEN
444  k = j
445  END IF
446  IF( j.LT.k ) THEN
447  j = j + 1
448  GO TO 100
449  END IF
450  ELSE
451  k = 0
452  END IF
453 *
454 * Check error code from CSYTRF and handle error.
455 *
456  IF( info.NE.k ) THEN
457  CALL alaerh( path, 'CSYTRF_AA_2STAGE', info, k,
458  $ uplo, n, n, -1, -1, nb, imat, nfail,
459  $ nerrs, nout )
460  END IF
461 *
462 *+ TEST 1
463 * Reconstruct matrix from factors and compute residual.
464 *
465 c CALL CSYT01_AA( UPLO, N, A, LDA, AFAC, LDA, IWORK,
466 c $ AINV, LDA, RWORK, RESULT( 1 ) )
467 c NT = 1
468  nt = 0
469 *
470 *
471 * Print information about the tests that did not pass
472 * the threshold.
473 *
474  DO 110 k = 1, nt
475  IF( result( k ).GE.thresh ) THEN
476  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
477  $ CALL alahd( nout, path )
478  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
479  $ result( k )
480  nfail = nfail + 1
481  END IF
482  110 CONTINUE
483  nrun = nrun + nt
484 *
485 * Skip solver test if INFO is not 0.
486 *
487  IF( info.NE.0 ) THEN
488  GO TO 140
489  END IF
490 *
491 * Do for each value of NRHS in NSVAL.
492 *
493  DO 130 irhs = 1, nns
494  nrhs = nsval( irhs )
495 *
496 *+ TEST 2 (Using TRS)
497 * Solve and compute residual for A * X = B.
498 *
499 * Choose a set of NRHS random solution vectors
500 * stored in XACT and set up the right hand side B
501 *
502  srnamt = 'CLARHS'
503  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
504  $ kl, ku, nrhs, a, lda, xact, lda,
505  $ b, lda, iseed, info )
506  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
507 *
508  srnamt = 'CSYTRS_AA_2STAGE'
509  lwork = max( 1, 3*n-2 )
510  CALL csytrs_aa_2stage( uplo, n, nrhs, afac, lda,
511  $ ainv, (3*nb+1)*n, iwork, iwork( 1+n ),
512  $ x, lda, info )
513 *
514 * Check error code from CSYTRS and handle error.
515 *
516  IF( info.NE.0 ) THEN
517  IF( izero.EQ.0 ) THEN
518  CALL alaerh( path, 'CSYTRS_AA_2STAGE',
519  $ info, 0, uplo, n, n, -1, -1,
520  $ nrhs, imat, nfail, nerrs, nout )
521  END IF
522  ELSE
523  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda
524  $ )
525 *
526 * Compute the residual for the solution
527 *
528  CALL csyt02( uplo, n, nrhs, a, lda, x, lda,
529  $ work, lda, rwork, result( 2 ) )
530 *
531 *
532 * Print information about the tests that did not pass
533 * the threshold.
534 *
535  DO 120 k = 2, 2
536  IF( result( k ).GE.thresh ) THEN
537  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
538  $ CALL alahd( nout, path )
539  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
540  $ imat, k, result( k )
541  nfail = nfail + 1
542  END IF
543  120 CONTINUE
544  END IF
545  nrun = nrun + 1
546 *
547 * End do for each value of NRHS in NSVAL.
548 *
549  130 CONTINUE
550  140 CONTINUE
551  150 CONTINUE
552  160 CONTINUE
553  170 CONTINUE
554  180 CONTINUE
555 *
556 * Print a summary of the results.
557 *
558  CALL alasum( path, nout, nfail, nrun, nerrs )
559 *
560  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
561  $ i2, ', test ', i2, ', ratio =', g12.5 )
562  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
563  $ i2, ', test(', i2, ') =', g12.5 )
564  9995 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be <=',
565  $ i6 )
566  RETURN
567 *
568 * End of CCHKSY_AA_2STAGE
569 *
570  END
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine csyt01(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01
Definition: csyt01.f:125
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:55
subroutine cchksy_aa_2stage(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
CCHKSY_AA_2STAGE
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:127
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine csytrf_aa_2stage(UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2, WORK, LWORK, INFO)
CSYTRF_AA_2STAGE
subroutine csytrs_aa_2stage(UPLO, N, NRHS, A, LDA, TB, LTB, IPIV, IPIV2, B, LDB, INFO)
CSYTRS_AA_2STAGE