LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgemlq.f
Go to the documentation of this file.
1*> \brief \b DGEMLQ
2*
3* Definition:
4* ===========
5*
6* SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T,
7* $ TSIZE, C, LDC, WORK, LWORK, INFO )
8*
9*
10* .. Scalar Arguments ..
11* CHARACTER SIDE, TRANS
12* INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC
13* ..
14* .. Array Arguments ..
15* DOUBLE PRECISION A( LDA, * ), T( * ), C(LDC, * ), WORK( * )
16* ..
17*
18*> \par Purpose:
19* =============
20*>
21*> \verbatim
22*>
23*> DGEMLQ overwrites the general real M-by-N matrix C with
24*>
25*> SIDE = 'L' SIDE = 'R'
26*> TRANS = 'N': Q * C C * Q
27*> TRANS = 'T': Q**T * C C * Q**T
28*> where Q is a real orthogonal matrix defined as the product
29*> of blocked elementary reflectors computed by short wide LQ
30*> factorization (DGELQ)
31*>
32*> \endverbatim
33*
34* Arguments:
35* ==========
36*
37*> \param[in] SIDE
38*> \verbatim
39*> SIDE is CHARACTER*1
40*> = 'L': apply Q or Q**T from the Left;
41*> = 'R': apply Q or Q**T from the Right.
42*> \endverbatim
43*>
44*> \param[in] TRANS
45*> \verbatim
46*> TRANS is CHARACTER*1
47*> = 'N': No transpose, apply Q;
48*> = 'T': Transpose, apply Q**T.
49*> \endverbatim
50*>
51*> \param[in] M
52*> \verbatim
53*> M is INTEGER
54*> The number of rows of the matrix A. M >=0.
55*> \endverbatim
56*>
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The number of columns of the matrix C. N >= 0.
61*> \endverbatim
62*>
63*> \param[in] K
64*> \verbatim
65*> K is INTEGER
66*> The number of elementary reflectors whose product defines
67*> the matrix Q.
68*> If SIDE = 'L', M >= K >= 0;
69*> if SIDE = 'R', N >= K >= 0.
70*>
71*> \endverbatim
72*>
73*> \param[in] A
74*> \verbatim
75*> A is DOUBLE PRECISION array, dimension
76*> (LDA,M) if SIDE = 'L',
77*> (LDA,N) if SIDE = 'R'
78*> Part of the data structure to represent Q as returned by DGELQ.
79*> \endverbatim
80*>
81*> \param[in] LDA
82*> \verbatim
83*> LDA is INTEGER
84*> The leading dimension of the array A. LDA >= max(1,K).
85*> \endverbatim
86*>
87*> \param[in] T
88*> \verbatim
89*> T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE)).
90*> Part of the data structure to represent Q as returned by DGELQ.
91*> \endverbatim
92*>
93*> \param[in] TSIZE
94*> \verbatim
95*> TSIZE is INTEGER
96*> The dimension of the array T. TSIZE >= 5.
97*> \endverbatim
98*>
99*> \param[in,out] C
100*> \verbatim
101*> C is DOUBLE PRECISION array, dimension (LDC,N)
102*> On entry, the M-by-N matrix C.
103*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
104*> \endverbatim
105*>
106*> \param[in] LDC
107*> \verbatim
108*> LDC is INTEGER
109*> The leading dimension of the array C. LDC >= max(1,M).
110*> \endverbatim
111*>
112*> \param[out] WORK
113*> \verbatim
114*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
115*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
116*> \endverbatim
117*>
118*> \param[in] LWORK
119*> \verbatim
120*> LWORK is INTEGER
121*> The dimension of the array WORK. LWORK >= 1.
122*> If LWORK = -1, then a workspace query is assumed. The routine
123*> only calculates the size of the WORK array, returns this
124*> value as WORK(1), and no error message related to WORK
125*> is issued by XERBLA.
126*> \endverbatim
127*>
128*> \param[out] INFO
129*> \verbatim
130*> INFO is INTEGER
131*> = 0: successful exit
132*> < 0: if INFO = -i, the i-th argument had an illegal value
133*> \endverbatim
134*
135* Authors:
136* ========
137*
138*> \author Univ. of Tennessee
139*> \author Univ. of California Berkeley
140*> \author Univ. of Colorado Denver
141*> \author NAG Ltd.
142*
143*> \par Further Details
144* ====================
145*>
146*> \verbatim
147*>
148*> These details are particular for this LAPACK implementation. Users should not
149*> take them for granted. These details may change in the future, and are not likely
150*> true for another LAPACK implementation. These details are relevant if one wants
151*> to try to understand the code. They are not part of the interface.
152*>
153*> In this version,
154*>
155*> T(2): row block size (MB)
156*> T(3): column block size (NB)
157*> T(6:TSIZE): data structure needed for Q, computed by
158*> DLASWLQ or DGELQT
159*>
160*> Depending on the matrix dimensions M and N, and row and column
161*> block sizes MB and NB returned by ILAENV, DGELQ will use either
162*> DLASWLQ (if the matrix is wide-and-short) or DGELQT to compute
163*> the LQ factorization.
164*> This version of DGEMLQ will use either DLAMSWLQ or DGEMLQT to
165*> multiply matrix Q by another matrix.
166*> Further Details in DLAMSWLQ or DGEMLQT.
167*> \endverbatim
168*>
169*> \ingroup gemlq
170*>
171* =====================================================================
172 SUBROUTINE dgemlq( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
173 $ C, LDC, WORK, LWORK, INFO )
174*
175* -- LAPACK computational routine --
176* -- LAPACK is a software package provided by Univ. of Tennessee, --
177* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178*
179* .. Scalar Arguments ..
180 CHARACTER SIDE, TRANS
181 INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
182* ..
183* .. Array Arguments ..
184 DOUBLE PRECISION A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
185* ..
186*
187* =====================================================================
188*
189* ..
190* .. Local Scalars ..
191 LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
192 INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN
193* ..
194* .. External Functions ..
195 LOGICAL LSAME
196 EXTERNAL lsame
197* ..
198* .. External Subroutines ..
199 EXTERNAL dlamswlq, dgemlqt, xerbla
200* ..
201* .. Intrinsic Functions ..
202 INTRINSIC int, max, min, mod
203* ..
204* .. Executable Statements ..
205*
206* Test the input arguments
207*
208 lquery = ( lwork.EQ.-1 )
209 notran = lsame( trans, 'N' )
210 tran = lsame( trans, 'T' )
211 left = lsame( side, 'L' )
212 right = lsame( side, 'R' )
213*
214 mb = int( t( 2 ) )
215 nb = int( t( 3 ) )
216 IF( left ) THEN
217 lw = n * mb
218 mn = m
219 ELSE
220 lw = m * mb
221 mn = n
222 END IF
223*
224 minmnk = min( m, n, k )
225 IF( minmnk.EQ.0 ) THEN
226 lwmin = 1
227 ELSE
228 lwmin = max( 1, lw )
229 END IF
230*
231 IF( ( nb.GT.k ) .AND. ( mn.GT.k ) ) THEN
232 IF( mod( mn - k, nb - k ) .EQ. 0 ) THEN
233 nblcks = ( mn - k ) / ( nb - k )
234 ELSE
235 nblcks = ( mn - k ) / ( nb - k ) + 1
236 END IF
237 ELSE
238 nblcks = 1
239 END IF
240*
241 info = 0
242 IF( .NOT.left .AND. .NOT.right ) THEN
243 info = -1
244 ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
245 info = -2
246 ELSE IF( m.LT.0 ) THEN
247 info = -3
248 ELSE IF( n.LT.0 ) THEN
249 info = -4
250 ELSE IF( k.LT.0 .OR. k.GT.mn ) THEN
251 info = -5
252 ELSE IF( lda.LT.max( 1, k ) ) THEN
253 info = -7
254 ELSE IF( tsize.LT.5 ) THEN
255 info = -9
256 ELSE IF( ldc.LT.max( 1, m ) ) THEN
257 info = -11
258 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
259 info = -13
260 END IF
261*
262 IF( info.EQ.0 ) THEN
263 work( 1 ) = lwmin
264 END IF
265*
266 IF( info.NE.0 ) THEN
267 CALL xerbla( 'DGEMLQ', -info )
268 RETURN
269 ELSE IF( lquery ) THEN
270 RETURN
271 END IF
272*
273* Quick return if possible
274*
275 IF( minmnk.EQ.0 ) THEN
276 RETURN
277 END IF
278*
279 IF( ( left .AND. m.LE.k ) .OR. ( right .AND. n.LE.k )
280 $ .OR. ( nb.LE.k ) .OR. ( nb.GE.max( m, n, k ) ) ) THEN
281 CALL dgemlqt( side, trans, m, n, k, mb, a, lda,
282 $ t( 6 ), mb, c, ldc, work, info )
283 ELSE
284 CALL dlamswlq( side, trans, m, n, k, mb, nb, a, lda, t( 6 ),
285 $ mb, c, ldc, work, lwork, info )
286 END IF
287*
288 work( 1 ) = lwmin
289*
290 RETURN
291*
292* End of DGEMLQ
293*
294 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgemlq(side, trans, m, n, k, a, lda, t, tsize, c, ldc, work, lwork, info)
DGEMLQ
Definition dgemlq.f:174
subroutine dgemlqt(side, trans, m, n, k, mb, v, ldv, t, ldt, c, ldc, work, info)
DGEMLQT
Definition dgemlqt.f:166
subroutine dlamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
DLAMSWLQ
Definition dlamswlq.f:200