LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
dlamswlq.f
Go to the documentation of this file.
1*> \brief \b DLAMSWLQ
2*
3* Definition:
4* ===========
5*
6* SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
7* $ LDT, C, LDC, WORK, LWORK, INFO )
8*
9*
10* .. Scalar Arguments ..
11* CHARACTER SIDE, TRANS
12* INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
13* ..
14* .. Array Arguments ..
15* DOUBLE A( LDA, * ), WORK( * ), C(LDC, * ),
16* $ T( LDT, * )
17*> \par Purpose:
18* =============
19*>
20*> \verbatim
21*>
22*> DLAMSWLQ overwrites the general real M-by-N matrix C with
23*>
24*>
25*> SIDE = 'L' SIDE = 'R'
26*> TRANS = 'N': Q * C C * Q
27*> TRANS = 'T': Q**T * C C * Q**T
28*> where Q is a real orthogonal matrix defined as the product of blocked
29*> elementary reflectors computed by short wide LQ
30*> factorization (DLASWLQ)
31*> \endverbatim
32*
33* Arguments:
34* ==========
35*
36*> \param[in] SIDE
37*> \verbatim
38*> SIDE is CHARACTER*1
39*> = 'L': apply Q or Q**T from the Left;
40*> = 'R': apply Q or Q**T from the Right.
41*> \endverbatim
42*>
43*> \param[in] TRANS
44*> \verbatim
45*> TRANS is CHARACTER*1
46*> = 'N': No transpose, apply Q;
47*> = 'T': Transpose, apply Q**T.
48*> \endverbatim
49*>
50*> \param[in] M
51*> \verbatim
52*> M is INTEGER
53*> The number of rows of the matrix C. M >=0.
54*> \endverbatim
55*>
56*> \param[in] N
57*> \verbatim
58*> N is INTEGER
59*> The number of columns of the matrix C. N >= 0.
60*> \endverbatim
61*>
62*> \param[in] K
63*> \verbatim
64*> K is INTEGER
65*> The number of elementary reflectors whose product defines
66*> the matrix Q.
67*> M >= K >= 0;
68*>
69*> \endverbatim
70*> \param[in] MB
71*> \verbatim
72*> MB is INTEGER
73*> The row block size to be used in the blocked LQ.
74*> M >= MB >= 1
75*> \endverbatim
76*>
77*> \param[in] NB
78*> \verbatim
79*> NB is INTEGER
80*> The column block size to be used in the blocked LQ.
81*> NB > M.
82*> \endverbatim
83*>
84*> \param[in] A
85*> \verbatim
86*> A is DOUBLE PRECISION array, dimension
87*> (LDA,M) if SIDE = 'L',
88*> (LDA,N) if SIDE = 'R'
89*> The i-th row must contain the vector which defines the blocked
90*> elementary reflector H(i), for i = 1,2,...,k, as returned by
91*> DLASWLQ in the first k rows of its array argument A.
92*> \endverbatim
93*>
94*> \param[in] LDA
95*> \verbatim
96*> LDA is INTEGER
97*> The leading dimension of the array A. LDA >= max(1,K).
98*> \endverbatim
99*>
100*> \param[in] T
101*> \verbatim
102*> T is DOUBLE PRECISION array, dimension
103*> ( M * Number of blocks(CEIL(N-K/NB-K)),
104*> The blocked upper triangular block reflectors stored in compact form
105*> as a sequence of upper triangular blocks. See below
106*> for further details.
107*> \endverbatim
108*>
109*> \param[in] LDT
110*> \verbatim
111*> LDT is INTEGER
112*> The leading dimension of the array T. LDT >= MB.
113*> \endverbatim
114*>
115*> \param[in,out] C
116*> \verbatim
117*> C is DOUBLE PRECISION array, dimension (LDC,N)
118*> On entry, the M-by-N matrix C.
119*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
120*> \endverbatim
121*>
122*> \param[in] LDC
123*> \verbatim
124*> LDC is INTEGER
125*> The leading dimension of the array C. LDC >= max(1,M).
126*> \endverbatim
127*>
128*> \param[out] WORK
129*> \verbatim
130*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
131*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
132*> \endverbatim
133*>
134*> \param[in] LWORK
135*> \verbatim
136*> LWORK is INTEGER
137*> The dimension of the array WORK.
138*>
139*> If MIN(M,N,K) = 0, LWORK >= 1.
140*> If SIDE = 'L', LWORK >= max(1,NB*MB).
141*> If SIDE = 'R', LWORK >= max(1,M*MB).
142*> If LWORK = -1, then a workspace query is assumed; the routine
143*> only calculates the minimal size of the WORK array, returns
144*> this value as the first entry of the WORK array, and no error
145*> message related to LWORK is issued by XERBLA.
146*> \endverbatim
147*>
148*> \param[out] INFO
149*> \verbatim
150*> INFO is INTEGER
151*> = 0: successful exit
152*> < 0: if INFO = -i, the i-th argument had an illegal value
153*> \endverbatim
154*
155* Authors:
156* ========
157*
158*> \author Univ. of Tennessee
159*> \author Univ. of California Berkeley
160*> \author Univ. of Colorado Denver
161*> \author NAG Ltd.
162*
163*> \par Further Details:
164* =====================
165*>
166*> \verbatim
167*> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
168*> representing Q as a product of other orthogonal matrices
169*> Q = Q(1) * Q(2) * . . . * Q(k)
170*> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
171*> Q(1) zeros out the upper diagonal entries of rows 1:NB of A
172*> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
173*> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
174*> . . .
175*>
176*> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
177*> stored under the diagonal of rows 1:MB of A, and by upper triangular
178*> block reflectors, stored in array T(1:LDT,1:N).
179*> For more information see Further Details in GELQT.
180*>
181*> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
182*> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
183*> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
184*> The last Q(k) may use fewer rows.
185*> For more information see Further Details in TPLQT.
186*>
187*> For more details of the overall algorithm, see the description of
188*> Sequential TSQR in Section 2.2 of [1].
189*>
190*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
191*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
192*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
193*> \endverbatim
194*>
195*> \ingroup lamswlq
196*>
197* =====================================================================
198 SUBROUTINE dlamswlq( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
199 $ LDT, C, LDC, WORK, LWORK, INFO )
200*
201* -- LAPACK computational routine --
202* -- LAPACK is a software package provided by Univ. of Tennessee, --
203* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
204*
205* .. Scalar Arguments ..
206 CHARACTER SIDE, TRANS
207 INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
208* ..
209* .. Array Arguments ..
210 DOUBLE PRECISION A( LDA, * ), WORK( * ), C( LDC, * ),
211 $ t( ldt, * )
212* ..
213*
214* =====================================================================
215*
216* ..
217* .. Local Scalars ..
218 LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
219 INTEGER I, II, KK, CTR, LW, MINMNK, LWMIN
220* ..
221* .. External Functions ..
222 LOGICAL LSAME
223 EXTERNAL lsame
224* .. External Subroutines ..
225 EXTERNAL dtpmlqt, dgemlqt, xerbla
226* ..
227* .. Executable Statements ..
228*
229* Test the input arguments
230*
231 lquery = ( lwork.EQ.-1 )
232 notran = lsame( trans, 'N' )
233 tran = lsame( trans, 'T' )
234 left = lsame( side, 'L' )
235 right = lsame( side, 'R' )
236 IF( left ) THEN
237 lw = n * mb
238 ELSE
239 lw = m * mb
240 END IF
241*
242 minmnk = min( m, n, k )
243 IF( minmnk.EQ.0 ) THEN
244 lwmin = 1
245 ELSE
246 lwmin = max( 1, lw )
247 END IF
248*
249 info = 0
250 IF( .NOT.left .AND. .NOT.right ) THEN
251 info = -1
252 ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
253 info = -2
254 ELSE IF( k.LT.0 ) THEN
255 info = -5
256 ELSE IF( m.LT.k ) THEN
257 info = -3
258 ELSE IF( n.LT.0 ) THEN
259 info = -4
260 ELSE IF( k.LT.mb .OR. mb.LT.1 ) THEN
261 info = -6
262 ELSE IF( lda.LT.max( 1, k ) ) THEN
263 info = -9
264 ELSE IF( ldt.LT.max( 1, mb ) ) THEN
265 info = -11
266 ELSE IF( ldc.LT.max( 1, m ) ) THEN
267 info = -13
268 ELSE IF( lwork.LT.lwmin .AND. (.NOT.lquery) ) THEN
269 info = -15
270 END IF
271*
272 IF( info.EQ.0 ) THEN
273 work( 1 ) = lwmin
274 END IF
275 IF( info.NE.0 ) THEN
276 CALL xerbla( 'DLAMSWLQ', -info )
277 RETURN
278 ELSE IF( lquery ) THEN
279 RETURN
280 END IF
281*
282* Quick return if possible
283*
284 IF( minmnk.EQ.0 ) THEN
285 RETURN
286 END IF
287*
288 IF((nb.LE.k).OR.(nb.GE.max(m,n,k))) THEN
289 CALL dgemlqt( side, trans, m, n, k, mb, a, lda,
290 $ t, ldt, c, ldc, work, info)
291 RETURN
292 END IF
293*
294 IF(left.AND.tran) THEN
295*
296* Multiply Q to the last block of C
297*
298 kk = mod((m-k),(nb-k))
299 ctr = (m-k)/(nb-k)
300 IF (kk.GT.0) THEN
301 ii=m-kk+1
302 CALL dtpmlqt('L','T',kk , n, k, 0, mb, a(1,ii), lda,
303 $ t(1,ctr*k+1), ldt, c(1,1), ldc,
304 $ c(ii,1), ldc, work, info )
305 ELSE
306 ii=m+1
307 END IF
308*
309 DO i=ii-(nb-k),nb+1,-(nb-k)
310*
311* Multiply Q to the current block of C (1:M,I:I+NB)
312*
313 ctr = ctr - 1
314 CALL dtpmlqt('L','T',nb-k , n, k, 0,mb, a(1,i), lda,
315 $ t(1, ctr*k+1),ldt, c(1,1), ldc,
316 $ c(i,1), ldc, work, info )
317
318 END DO
319*
320* Multiply Q to the first block of C (1:M,1:NB)
321*
322 CALL dgemlqt('L','T',nb , n, k, mb, a(1,1), lda, t
323 $ ,ldt ,c(1,1), ldc, work, info )
324*
325 ELSE IF (left.AND.notran) THEN
326*
327* Multiply Q to the first block of C
328*
329 kk = mod((m-k),(nb-k))
330 ii=m-kk+1
331 ctr = 1
332 CALL dgemlqt('L','N',nb , n, k, mb, a(1,1), lda, t
333 $ ,ldt ,c(1,1), ldc, work, info )
334*
335 DO i=nb+1,ii-nb+k,(nb-k)
336*
337* Multiply Q to the current block of C (I:I+NB,1:N)
338*
339 CALL dtpmlqt('L','N',nb-k , n, k, 0,mb, a(1,i), lda,
340 $ t(1,ctr*k+1), ldt, c(1,1), ldc,
341 $ c(i,1), ldc, work, info )
342 ctr = ctr + 1
343*
344 END DO
345 IF(ii.LE.m) THEN
346*
347* Multiply Q to the last block of C
348*
349 CALL dtpmlqt('L','N',kk , n, k, 0, mb, a(1,ii), lda,
350 $ t(1,ctr*k+1), ldt, c(1,1), ldc,
351 $ c(ii,1), ldc, work, info )
352*
353 END IF
354*
355 ELSE IF(right.AND.notran) THEN
356*
357* Multiply Q to the last block of C
358*
359 kk = mod((n-k),(nb-k))
360 ctr = (n-k)/(nb-k)
361 IF (kk.GT.0) THEN
362 ii=n-kk+1
363 CALL dtpmlqt('R','N',m , kk, k, 0, mb, a(1, ii), lda,
364 $ t(1,ctr *k+1), ldt, c(1,1), ldc,
365 $ c(1,ii), ldc, work, info )
366 ELSE
367 ii=n+1
368 END IF
369*
370 DO i=ii-(nb-k),nb+1,-(nb-k)
371*
372* Multiply Q to the current block of C (1:M,I:I+MB)
373*
374 ctr = ctr - 1
375 CALL dtpmlqt('R','N', m, nb-k, k, 0, mb, a(1, i), lda,
376 $ t(1,ctr*k+1), ldt, c(1,1), ldc,
377 $ c(1,i), ldc, work, info )
378*
379 END DO
380*
381* Multiply Q to the first block of C (1:M,1:MB)
382*
383 CALL dgemlqt('R','N',m , nb, k, mb, a(1,1), lda, t
384 $ ,ldt ,c(1,1), ldc, work, info )
385*
386 ELSE IF (right.AND.tran) THEN
387*
388* Multiply Q to the first block of C
389*
390 kk = mod((n-k),(nb-k))
391 ctr = 1
392 ii=n-kk+1
393 CALL dgemlqt('R','T',m , nb, k, mb, a(1,1), lda, t
394 $ ,ldt ,c(1,1), ldc, work, info )
395*
396 DO i=nb+1,ii-nb+k,(nb-k)
397*
398* Multiply Q to the current block of C (1:M,I:I+MB)
399*
400 CALL dtpmlqt('R','T',m , nb-k, k, 0,mb, a(1,i), lda,
401 $ t(1,ctr*k+1), ldt, c(1,1), ldc,
402 $ c(1,i), ldc, work, info )
403 ctr = ctr + 1
404*
405 END DO
406 IF(ii.LE.n) THEN
407*
408* Multiply Q to the last block of C
409*
410 CALL dtpmlqt('R','T',m , kk, k, 0,mb, a(1,ii), lda,
411 $ t(1,ctr*k+1),ldt, c(1,1), ldc,
412 $ c(1,ii), ldc, work, info )
413*
414 END IF
415*
416 END IF
417*
418 work( 1 ) = lwmin
419*
420 RETURN
421*
422* End of DLAMSWLQ
423*
424 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgemlqt(side, trans, m, n, k, mb, v, ldv, t, ldt, c, ldc, work, info)
DGEMLQT
Definition dgemlqt.f:166
subroutine dlamswlq(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
DLAMSWLQ
Definition dlamswlq.f:200
subroutine dtpmlqt(side, trans, m, n, k, l, mb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
DTPMLQT
Definition dtpmlqt.f:213