LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dtpmlqt | ( | character | side, |
character | trans, | ||
integer | m, | ||
integer | n, | ||
integer | k, | ||
integer | l, | ||
integer | mb, | ||
double precision, dimension( ldv, * ) | v, | ||
integer | ldv, | ||
double precision, dimension( ldt, * ) | t, | ||
integer | ldt, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( * ) | work, | ||
integer | info ) |
DTPMLQT
Download DTPMLQT + dependencies [TGZ] [ZIP] [TXT]
!> !> DTPMQRT applies a real orthogonal matrix Q obtained from a !> real block reflector H to a general !> real matrix C, which consists of two blocks A and B. !>
[in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left; !> = 'R': apply Q or Q**T from the Right. !> |
[in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'T': Transpose, apply Q**T. !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix B. M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix B. N >= 0. !> |
[in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> |
[in] | L | !> L is INTEGER !> The order of the trapezoidal part of V. !> K >= L >= 0. See Further Details. !> |
[in] | MB | !> MB is INTEGER !> The block size used for the storage of T. K >= MB >= 1. !> This must be the same value of MB used to generate T !> in DTPLQT. !> |
[in] | V | !> V is DOUBLE PRECISION array, dimension (LDV,K) !> The i-th row must contain the vector which defines the !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> DTPLQT in B. See Further Details. !> |
[in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. LDV >= K. !> |
[in] | T | !> T is DOUBLE PRECISION array, dimension (LDT,K) !> The upper triangular factors of the block reflectors !> as returned by DTPLQT, stored as a MB-by-K matrix. !> |
[in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= MB. !> |
[in,out] | A | !> A is DOUBLE PRECISION array, dimension !> (LDA,N) if SIDE = 'L' or !> (LDA,K) if SIDE = 'R' !> On entry, the K-by-N or M-by-K matrix A. !> On exit, A is overwritten by the corresponding block of !> Q*C or Q**T*C or C*Q or C*Q**T. See Further Details. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,K); !> If SIDE = 'R', LDA >= max(1,M). !> |
[in,out] | B | !> B is DOUBLE PRECISION array, dimension (LDB,N) !> On entry, the M-by-N matrix B. !> On exit, B is overwritten by the corresponding block of !> Q*C or Q**T*C or C*Q or C*Q**T. See Further Details. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. !> LDB >= max(1,M). !> |
[out] | WORK | !> WORK is DOUBLE PRECISION array. The dimension of WORK is !> N*MB if SIDE = 'L', or M*MB if SIDE = 'R'. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The columns of the pentagonal matrix V contain the elementary reflectors !> H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a !> trapezoidal block V2: !> !> V = [V1] [V2]. !> !> !> The size of the trapezoidal block V2 is determined by the parameter L, !> where 0 <= L <= K; V2 is lower trapezoidal, consisting of the first L !> rows of a K-by-K upper triangular matrix. If L=K, V2 is lower triangular; !> if L=0, there is no trapezoidal block, hence V = V1 is rectangular. !> !> If SIDE = 'L': C = [A] where A is K-by-N, B is M-by-N and V is K-by-M. !> [B] !> !> If SIDE = 'R': C = [A B] where A is M-by-K, B is M-by-N and V is K-by-N. !> !> The real orthogonal matrix Q is formed from V and T. !> !> If TRANS='N' and SIDE='L', C is on exit replaced with Q * C. !> !> If TRANS='T' and SIDE='L', C is on exit replaced with Q**T * C. !> !> If TRANS='N' and SIDE='R', C is on exit replaced with C * Q. !> !> If TRANS='T' and SIDE='R', C is on exit replaced with C * Q**T. !>
Definition at line 210 of file dtpmlqt.f.