LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlamswlq | ( | character | side, |
character | trans, | ||
integer | m, | ||
integer | n, | ||
integer | k, | ||
integer | mb, | ||
integer | nb, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldt, * ) | t, | ||
integer | ldt, | ||
double precision, dimension( ldc, * ) | c, | ||
integer | ldc, | ||
double precision, dimension( * ) | work, | ||
integer | lwork, | ||
integer | info ) |
DLAMSWLQ
!> !> DLAMSWLQ overwrites the general real M-by-N matrix C with !> !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'T': Q**T * C C * Q**T !> where Q is a real orthogonal matrix defined as the product of blocked !> elementary reflectors computed by short wide LQ !> factorization (DLASWLQ) !>
[in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left; !> = 'R': apply Q or Q**T from the Right. !> |
[in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'T': Transpose, apply Q**T. !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >=0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
[in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. !> M >= K >= 0; !> !> |
[in] | MB | !> MB is INTEGER !> The row block size to be used in the blocked LQ. !> M >= MB >= 1 !> |
[in] | NB | !> NB is INTEGER !> The column block size to be used in the blocked LQ. !> NB > M. !> |
[in] | A | !> A is DOUBLE PRECISION array, dimension !> (LDA,M) if SIDE = 'L', !> (LDA,N) if SIDE = 'R' !> The i-th row must contain the vector which defines the blocked !> elementary reflector H(i), for i = 1,2,...,k, as returned by !> DLASWLQ in the first k rows of its array argument A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,K). !> |
[in] | T | !> T is DOUBLE PRECISION array, dimension !> ( M * Number of blocks(CEIL(N-K/NB-K)), !> The blocked upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. See below !> for further details. !> |
[in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= MB. !> |
[in,out] | C | !> C is DOUBLE PRECISION array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. !> |
[in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
[out] | WORK | !> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> !> If MIN(M,N,K) = 0, LWORK >= 1. !> If SIDE = 'L', LWORK >= max(1,NB*MB). !> If SIDE = 'R', LWORK >= max(1,M*MB). !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the minimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations, !> representing Q as a product of other orthogonal matrices !> Q = Q(1) * Q(2) * . . . * Q(k) !> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A: !> Q(1) zeros out the upper diagonal entries of rows 1:NB of A !> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A !> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A !> . . . !> !> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors !> stored under the diagonal of rows 1:MB of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,1:N). !> For more information see Further Details in GELQT. !> !> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors !> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M). !> The last Q(k) may use fewer rows. !> For more information see Further Details in TPLQT. !> !> For more details of the overall algorithm, see the description of !> Sequential TSQR in Section 2.2 of [1]. !> !> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” !> J. Demmel, L. Grigori, M. Hoemmen, J. Langou, !> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 !>
Definition at line 198 of file dlamswlq.f.