LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
zdrvsp.f
Go to the documentation of this file.
1 *> \brief \b ZDRVSP
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZDRVSP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
13 * NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * DOUBLE PRECISION THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NVAL( * )
23 * DOUBLE PRECISION RWORK( * )
24 * COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> ZDRVSP tests the driver routines ZSPSV and -SVX.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is DOUBLE PRECISION
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is COMPLEX*16 array, dimension
91 *> (NMAX*(NMAX+1)/2)
92 *> \endverbatim
93 *>
94 *> \param[out] AFAC
95 *> \verbatim
96 *> AFAC is COMPLEX*16 array, dimension
97 *> (NMAX*(NMAX+1)/2)
98 *> \endverbatim
99 *>
100 *> \param[out] AINV
101 *> \verbatim
102 *> AINV is COMPLEX*16 array, dimension
103 *> (NMAX*(NMAX+1)/2)
104 *> \endverbatim
105 *>
106 *> \param[out] B
107 *> \verbatim
108 *> B is COMPLEX*16 array, dimension (NMAX*NRHS)
109 *> \endverbatim
110 *>
111 *> \param[out] X
112 *> \verbatim
113 *> X is COMPLEX*16 array, dimension (NMAX*NRHS)
114 *> \endverbatim
115 *>
116 *> \param[out] XACT
117 *> \verbatim
118 *> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
119 *> \endverbatim
120 *>
121 *> \param[out] WORK
122 *> \verbatim
123 *> WORK is COMPLEX*16 array, dimension
124 *> (NMAX*max(2,NRHS))
125 *> \endverbatim
126 *>
127 *> \param[out] RWORK
128 *> \verbatim
129 *> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
130 *> \endverbatim
131 *>
132 *> \param[out] IWORK
133 *> \verbatim
134 *> IWORK is INTEGER array, dimension (NMAX)
135 *> \endverbatim
136 *>
137 *> \param[in] NOUT
138 *> \verbatim
139 *> NOUT is INTEGER
140 *> The unit number for output.
141 *> \endverbatim
142 *
143 * Authors:
144 * ========
145 *
146 *> \author Univ. of Tennessee
147 *> \author Univ. of California Berkeley
148 *> \author Univ. of Colorado Denver
149 *> \author NAG Ltd.
150 *
151 *> \ingroup complex16_lin
152 *
153 * =====================================================================
154  SUBROUTINE zdrvsp( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
155  $ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
156  $ NOUT )
157 *
158 * -- LAPACK test routine --
159 * -- LAPACK is a software package provided by Univ. of Tennessee, --
160 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161 *
162 * .. Scalar Arguments ..
163  LOGICAL TSTERR
164  INTEGER NMAX, NN, NOUT, NRHS
165  DOUBLE PRECISION THRESH
166 * ..
167 * .. Array Arguments ..
168  LOGICAL DOTYPE( * )
169  INTEGER IWORK( * ), NVAL( * )
170  DOUBLE PRECISION RWORK( * )
171  COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
172  $ work( * ), x( * ), xact( * )
173 * ..
174 *
175 * =====================================================================
176 *
177 * .. Parameters ..
178  DOUBLE PRECISION ONE, ZERO
179  PARAMETER ( ONE = 1.0d+0, zero = 0.0d+0 )
180  INTEGER NTYPES, NTESTS
181  parameter( ntypes = 11, ntests = 6 )
182  INTEGER NFACT
183  parameter( nfact = 2 )
184 * ..
185 * .. Local Scalars ..
186  LOGICAL ZEROT
187  CHARACTER DIST, FACT, PACKIT, TYPE, UPLO, XTYPE
188  CHARACTER*3 PATH
189  INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
190  $ izero, j, k, k1, kl, ku, lda, mode, n, nb,
191  $ nbmin, nerrs, nfail, nimat, npp, nrun, nt
192  DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC
193 * ..
194 * .. Local Arrays ..
195  CHARACTER FACTS( NFACT )
196  INTEGER ISEED( 4 ), ISEEDY( 4 )
197  DOUBLE PRECISION RESULT( NTESTS )
198 * ..
199 * .. External Functions ..
200  DOUBLE PRECISION DGET06, ZLANSP
201  EXTERNAL DGET06, ZLANSP
202 * ..
203 * .. External Subroutines ..
204  EXTERNAL aladhd, alaerh, alasvm, xlaenv, zcopy, zerrvx,
207  $ zsptrf, zsptri
208 * ..
209 * .. Scalars in Common ..
210  LOGICAL LERR, OK
211  CHARACTER*32 SRNAMT
212  INTEGER INFOT, NUNIT
213 * ..
214 * .. Common blocks ..
215  COMMON / infoc / infot, nunit, ok, lerr
216  COMMON / srnamc / srnamt
217 * ..
218 * .. Intrinsic Functions ..
219  INTRINSIC dcmplx, max, min
220 * ..
221 * .. Data statements ..
222  DATA iseedy / 1988, 1989, 1990, 1991 /
223  DATA facts / 'F', 'N' /
224 * ..
225 * .. Executable Statements ..
226 *
227 * Initialize constants and the random number seed.
228 *
229  path( 1: 1 ) = 'Zomplex precision'
230  path( 2: 3 ) = 'SP'
231  nrun = 0
232  nfail = 0
233  nerrs = 0
234  DO 10 i = 1, 4
235  iseed( i ) = iseedy( i )
236  10 CONTINUE
237 *
238 * Test the error exits
239 *
240  IF( tsterr )
241  $ CALL zerrvx( path, nout )
242  infot = 0
243 *
244 * Set the block size and minimum block size for testing.
245 *
246  nb = 1
247  nbmin = 2
248  CALL xlaenv( 1, nb )
249  CALL xlaenv( 2, nbmin )
250 *
251 * Do for each value of N in NVAL
252 *
253  DO 180 in = 1, nn
254  n = nval( in )
255  lda = max( n, 1 )
256  npp = n*( n+1 ) / 2
257  xtype = 'N'
258  nimat = ntypes
259  IF( n.LE.0 )
260  $ nimat = 1
261 *
262  DO 170 imat = 1, nimat
263 *
264 * Do the tests only if DOTYPE( IMAT ) is true.
265 *
266  IF( .NOT.dotype( imat ) )
267  $ GO TO 170
268 *
269 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
270 *
271  zerot = imat.GE.3 .AND. imat.LE.6
272  IF( zerot .AND. n.LT.imat-2 )
273  $ GO TO 170
274 *
275 * Do first for UPLO = 'U', then for UPLO = 'L'
276 *
277  DO 160 iuplo = 1, 2
278  IF( iuplo.EQ.1 ) THEN
279  uplo = 'U'
280  packit = 'C'
281  ELSE
282  uplo = 'L'
283  packit = 'R'
284  END IF
285 *
286  IF( imat.NE.ntypes ) THEN
287 *
288 * Set up parameters with ZLATB4 and generate a test
289 * matrix with ZLATMS.
290 *
291  CALL zlatb4( path, imat, n, n, TYPE, kl, ku, anorm,
292  $ mode, cndnum, dist )
293 *
294  srnamt = 'ZLATMS'
295  CALL zlatms( n, n, dist, iseed, TYPE, rwork, mode,
296  $ cndnum, anorm, kl, ku, packit, a, lda,
297  $ work, info )
298 *
299 * Check error code from ZLATMS.
300 *
301  IF( info.NE.0 ) THEN
302  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n,
303  $ -1, -1, -1, imat, nfail, nerrs, nout )
304  GO TO 160
305  END IF
306 *
307 * For types 3-6, zero one or more rows and columns of
308 * the matrix to test that INFO is returned correctly.
309 *
310  IF( zerot ) THEN
311  IF( imat.EQ.3 ) THEN
312  izero = 1
313  ELSE IF( imat.EQ.4 ) THEN
314  izero = n
315  ELSE
316  izero = n / 2 + 1
317  END IF
318 *
319  IF( imat.LT.6 ) THEN
320 *
321 * Set row and column IZERO to zero.
322 *
323  IF( iuplo.EQ.1 ) THEN
324  ioff = ( izero-1 )*izero / 2
325  DO 20 i = 1, izero - 1
326  a( ioff+i ) = zero
327  20 CONTINUE
328  ioff = ioff + izero
329  DO 30 i = izero, n
330  a( ioff ) = zero
331  ioff = ioff + i
332  30 CONTINUE
333  ELSE
334  ioff = izero
335  DO 40 i = 1, izero - 1
336  a( ioff ) = zero
337  ioff = ioff + n - i
338  40 CONTINUE
339  ioff = ioff - izero
340  DO 50 i = izero, n
341  a( ioff+i ) = zero
342  50 CONTINUE
343  END IF
344  ELSE
345  IF( iuplo.EQ.1 ) THEN
346 *
347 * Set the first IZERO rows and columns to zero.
348 *
349  ioff = 0
350  DO 70 j = 1, n
351  i2 = min( j, izero )
352  DO 60 i = 1, i2
353  a( ioff+i ) = zero
354  60 CONTINUE
355  ioff = ioff + j
356  70 CONTINUE
357  ELSE
358 *
359 * Set the last IZERO rows and columns to zero.
360 *
361  ioff = 0
362  DO 90 j = 1, n
363  i1 = max( j, izero )
364  DO 80 i = i1, n
365  a( ioff+i ) = zero
366  80 CONTINUE
367  ioff = ioff + n - j
368  90 CONTINUE
369  END IF
370  END IF
371  ELSE
372  izero = 0
373  END IF
374  ELSE
375 *
376 * Use a special block diagonal matrix to test alternate
377 * code for the 2-by-2 blocks.
378 *
379  CALL zlatsp( uplo, n, a, iseed )
380  END IF
381 *
382  DO 150 ifact = 1, nfact
383 *
384 * Do first for FACT = 'F', then for other values.
385 *
386  fact = facts( ifact )
387 *
388 * Compute the condition number for comparison with
389 * the value returned by ZSPSVX.
390 *
391  IF( zerot ) THEN
392  IF( ifact.EQ.1 )
393  $ GO TO 150
394  rcondc = zero
395 *
396  ELSE IF( ifact.EQ.1 ) THEN
397 *
398 * Compute the 1-norm of A.
399 *
400  anorm = zlansp( '1', uplo, n, a, rwork )
401 *
402 * Factor the matrix A.
403 *
404  CALL zcopy( npp, a, 1, afac, 1 )
405  CALL zsptrf( uplo, n, afac, iwork, info )
406 *
407 * Compute inv(A) and take its norm.
408 *
409  CALL zcopy( npp, afac, 1, ainv, 1 )
410  CALL zsptri( uplo, n, ainv, iwork, work, info )
411  ainvnm = zlansp( '1', uplo, n, ainv, rwork )
412 *
413 * Compute the 1-norm condition number of A.
414 *
415  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
416  rcondc = one
417  ELSE
418  rcondc = ( one / anorm ) / ainvnm
419  END IF
420  END IF
421 *
422 * Form an exact solution and set the right hand side.
423 *
424  srnamt = 'ZLARHS'
425  CALL zlarhs( path, xtype, uplo, ' ', n, n, kl, ku,
426  $ nrhs, a, lda, xact, lda, b, lda, iseed,
427  $ info )
428  xtype = 'C'
429 *
430 * --- Test ZSPSV ---
431 *
432  IF( ifact.EQ.2 ) THEN
433  CALL zcopy( npp, a, 1, afac, 1 )
434  CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
435 *
436 * Factor the matrix and solve the system using ZSPSV.
437 *
438  srnamt = 'ZSPSV '
439  CALL zspsv( uplo, n, nrhs, afac, iwork, x, lda,
440  $ info )
441 *
442 * Adjust the expected value of INFO to account for
443 * pivoting.
444 *
445  k = izero
446  IF( k.GT.0 ) THEN
447  100 CONTINUE
448  IF( iwork( k ).LT.0 ) THEN
449  IF( iwork( k ).NE.-k ) THEN
450  k = -iwork( k )
451  GO TO 100
452  END IF
453  ELSE IF( iwork( k ).NE.k ) THEN
454  k = iwork( k )
455  GO TO 100
456  END IF
457  END IF
458 *
459 * Check error code from ZSPSV .
460 *
461  IF( info.NE.k ) THEN
462  CALL alaerh( path, 'ZSPSV ', info, k, uplo, n,
463  $ n, -1, -1, nrhs, imat, nfail,
464  $ nerrs, nout )
465  GO TO 120
466  ELSE IF( info.NE.0 ) THEN
467  GO TO 120
468  END IF
469 *
470 * Reconstruct matrix from factors and compute
471 * residual.
472 *
473  CALL zspt01( uplo, n, a, afac, iwork, ainv, lda,
474  $ rwork, result( 1 ) )
475 *
476 * Compute residual of the computed solution.
477 *
478  CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
479  CALL zspt02( uplo, n, nrhs, a, x, lda, work, lda,
480  $ rwork, result( 2 ) )
481 *
482 * Check solution from generated exact solution.
483 *
484  CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
485  $ result( 3 ) )
486  nt = 3
487 *
488 * Print information about the tests that did not pass
489 * the threshold.
490 *
491  DO 110 k = 1, nt
492  IF( result( k ).GE.thresh ) THEN
493  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
494  $ CALL aladhd( nout, path )
495  WRITE( nout, fmt = 9999 )'ZSPSV ', uplo, n,
496  $ imat, k, result( k )
497  nfail = nfail + 1
498  END IF
499  110 CONTINUE
500  nrun = nrun + nt
501  120 CONTINUE
502  END IF
503 *
504 * --- Test ZSPSVX ---
505 *
506  IF( ifact.EQ.2 .AND. npp.GT.0 )
507  $ CALL zlaset( 'Full', npp, 1, dcmplx( zero ),
508  $ dcmplx( zero ), afac, npp )
509  CALL zlaset( 'Full', n, nrhs, dcmplx( zero ),
510  $ dcmplx( zero ), x, lda )
511 *
512 * Solve the system and compute the condition number and
513 * error bounds using ZSPSVX.
514 *
515  srnamt = 'ZSPSVX'
516  CALL zspsvx( fact, uplo, n, nrhs, a, afac, iwork, b,
517  $ lda, x, lda, rcond, rwork,
518  $ rwork( nrhs+1 ), work, rwork( 2*nrhs+1 ),
519  $ info )
520 *
521 * Adjust the expected value of INFO to account for
522 * pivoting.
523 *
524  k = izero
525  IF( k.GT.0 ) THEN
526  130 CONTINUE
527  IF( iwork( k ).LT.0 ) THEN
528  IF( iwork( k ).NE.-k ) THEN
529  k = -iwork( k )
530  GO TO 130
531  END IF
532  ELSE IF( iwork( k ).NE.k ) THEN
533  k = iwork( k )
534  GO TO 130
535  END IF
536  END IF
537 *
538 * Check the error code from ZSPSVX.
539 *
540  IF( info.NE.k ) THEN
541  CALL alaerh( path, 'ZSPSVX', info, k, fact // uplo,
542  $ n, n, -1, -1, nrhs, imat, nfail,
543  $ nerrs, nout )
544  GO TO 150
545  END IF
546 *
547  IF( info.EQ.0 ) THEN
548  IF( ifact.GE.2 ) THEN
549 *
550 * Reconstruct matrix from factors and compute
551 * residual.
552 *
553  CALL zspt01( uplo, n, a, afac, iwork, ainv, lda,
554  $ rwork( 2*nrhs+1 ), result( 1 ) )
555  k1 = 1
556  ELSE
557  k1 = 2
558  END IF
559 *
560 * Compute residual of the computed solution.
561 *
562  CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
563  CALL zspt02( uplo, n, nrhs, a, x, lda, work, lda,
564  $ rwork( 2*nrhs+1 ), result( 2 ) )
565 *
566 * Check solution from generated exact solution.
567 *
568  CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
569  $ result( 3 ) )
570 *
571 * Check the error bounds from iterative refinement.
572 *
573  CALL zppt05( uplo, n, nrhs, a, b, lda, x, lda,
574  $ xact, lda, rwork, rwork( nrhs+1 ),
575  $ result( 4 ) )
576  ELSE
577  k1 = 6
578  END IF
579 *
580 * Compare RCOND from ZSPSVX with the computed value
581 * in RCONDC.
582 *
583  result( 6 ) = dget06( rcond, rcondc )
584 *
585 * Print information about the tests that did not pass
586 * the threshold.
587 *
588  DO 140 k = k1, 6
589  IF( result( k ).GE.thresh ) THEN
590  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
591  $ CALL aladhd( nout, path )
592  WRITE( nout, fmt = 9998 )'ZSPSVX', fact, uplo,
593  $ n, imat, k, result( k )
594  nfail = nfail + 1
595  END IF
596  140 CONTINUE
597  nrun = nrun + 7 - k1
598 *
599  150 CONTINUE
600 *
601  160 CONTINUE
602  170 CONTINUE
603  180 CONTINUE
604 *
605 * Print a summary of the results.
606 *
607  CALL alasvm( path, nout, nfail, nrun, nerrs )
608 *
609  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
610  $ ', test ', i2, ', ratio =', g12.5 )
611  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N =', i5,
612  $ ', type ', i2, ', test ', i2, ', ratio =', g12.5 )
613  RETURN
614 *
615 * End of ZDRVSP
616 *
617  END
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
Definition: zcopy.f:81
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zspt01(UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID)
ZSPT01
Definition: zspt01.f:112
subroutine zerrvx(PATH, NUNIT)
ZERRVX
Definition: zerrvx.f:55
subroutine zdrvsp(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
ZDRVSP
Definition: zdrvsp.f:157
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:102
subroutine zppt05(UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
ZPPT05
Definition: zppt05.f:157
subroutine zspt02(UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
ZSPT02
Definition: zspt02.f:123
subroutine zlatsp(UPLO, N, X, ISEED)
ZLATSP
Definition: zlatsp.f:84
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine zsptri(UPLO, N, AP, IPIV, WORK, INFO)
ZSPTRI
Definition: zsptri.f:109
subroutine zsptrf(UPLO, N, AP, IPIV, INFO)
ZSPTRF
Definition: zsptrf.f:158
subroutine zspsvx(FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
ZSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: zspsvx.f:277
subroutine zspsv(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
ZSPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: zspsv.f:162