LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zspsv()

subroutine zspsv ( character uplo,
integer n,
integer nrhs,
complex*16, dimension( * ) ap,
integer, dimension( * ) ipiv,
complex*16, dimension( ldb, * ) b,
integer ldb,
integer info )

ZSPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Download ZSPSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZSPSV computes the solution to a complex system of linear equations !> A * X = B, !> where A is an N-by-N symmetric matrix stored in packed format and X !> and B are N-by-NRHS matrices. !> !> The diagonal pivoting method is used to factor A as !> A = U * D * U**T, if UPLO = 'U', or !> A = L * D * L**T, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices, D is symmetric and block diagonal with 1-by-1 !> and 2-by-2 diagonal blocks. The factored form of A is then used to !> solve the system of equations A * X = B. !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
[in]N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
[in,out]AP
!> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> See below for further details. !> !> On exit, the block diagonal matrix D and the multipliers used !> to obtain the factor U or L from the factorization !> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as !> a packed triangular matrix in the same storage format as A. !>
[out]IPIV
!> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D, as !> determined by ZSPTRF. If IPIV(k) > 0, then rows and columns !> k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 !> diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, !> then rows and columns k-1 and -IPIV(k) were interchanged and !> D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and !> IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and !> -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 !> diagonal block. !>
[in,out]B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the N-by-NRHS right hand side matrix B. !> On exit, if INFO = 0, the N-by-NRHS solution matrix X. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, D(i,i) is exactly zero. The factorization !> has been completed, but the block diagonal matrix D is !> exactly singular, so the solution could not be !> computed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the symmetric matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = aji) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !>

Definition at line 159 of file zspsv.f.

160*
161* -- LAPACK driver routine --
162* -- LAPACK is a software package provided by Univ. of Tennessee, --
163* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
164*
165* .. Scalar Arguments ..
166 CHARACTER UPLO
167 INTEGER INFO, LDB, N, NRHS
168* ..
169* .. Array Arguments ..
170 INTEGER IPIV( * )
171 COMPLEX*16 AP( * ), B( LDB, * )
172* ..
173*
174* =====================================================================
175*
176* .. External Functions ..
177 LOGICAL LSAME
178 EXTERNAL lsame
179* ..
180* .. External Subroutines ..
181 EXTERNAL xerbla, zsptrf, zsptrs
182* ..
183* .. Intrinsic Functions ..
184 INTRINSIC max
185* ..
186* .. Executable Statements ..
187*
188* Test the input parameters.
189*
190 info = 0
191 IF( .NOT.lsame( uplo, 'U' ) .AND.
192 $ .NOT.lsame( uplo, 'L' ) ) THEN
193 info = -1
194 ELSE IF( n.LT.0 ) THEN
195 info = -2
196 ELSE IF( nrhs.LT.0 ) THEN
197 info = -3
198 ELSE IF( ldb.LT.max( 1, n ) ) THEN
199 info = -7
200 END IF
201 IF( info.NE.0 ) THEN
202 CALL xerbla( 'ZSPSV ', -info )
203 RETURN
204 END IF
205*
206* Compute the factorization A = U*D*U**T or A = L*D*L**T.
207*
208 CALL zsptrf( uplo, n, ap, ipiv, info )
209 IF( info.EQ.0 ) THEN
210*
211* Solve the system A*X = B, overwriting B with X.
212*
213 CALL zsptrs( uplo, n, nrhs, ap, ipiv, b, ldb, info )
214*
215 END IF
216 RETURN
217*
218* End of ZSPSV
219*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zsptrf(uplo, n, ap, ipiv, info)
ZSPTRF
Definition zsptrf.f:156
subroutine zsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
ZSPTRS
Definition zsptrs.f:113
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: