LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zspt01 | ( | character | uplo, |
integer | n, | ||
complex*16, dimension( * ) | a, | ||
complex*16, dimension( * ) | afac, | ||
integer, dimension( * ) | ipiv, | ||
complex*16, dimension( ldc, * ) | c, | ||
integer | ldc, | ||
double precision, dimension( * ) | rwork, | ||
double precision | resid ) |
ZSPT01
!> !> ZSPT01 reconstructs a symmetric indefinite packed matrix A from its !> diagonal pivoting factorization A = U*D*U' or A = L*D*L' and computes !> the residual !> norm( C - A ) / ( N * norm(A) * EPS ), !> where C is the reconstructed matrix and EPS is the machine epsilon. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (N*(N+1)/2) !> The original symmetric matrix A, stored as a packed !> triangular matrix. !> |
[in] | AFAC | !> AFAC is COMPLEX*16 array, dimension (N*(N+1)/2) !> The factored form of the matrix A, stored as a packed !> triangular matrix. AFAC contains the block diagonal matrix D !> and the multipliers used to obtain the factor L or U from the !> L*D*L' or U*D*U' factorization as computed by ZSPTRF. !> |
[in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> The pivot indices from ZSPTRF. !> |
[out] | C | !> C is COMPLEX*16 array, dimension (LDC,N) !> |
[in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,N). !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
[out] | RESID | !> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) !> |
Definition at line 111 of file zspt01.f.