LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zspsvx()

subroutine zspsvx ( character fact,
character uplo,
integer n,
integer nrhs,
complex*16, dimension( * ) ap,
complex*16, dimension( * ) afp,
integer, dimension( * ) ipiv,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldx, * ) x,
integer ldx,
double precision rcond,
double precision, dimension( * ) ferr,
double precision, dimension( * ) berr,
complex*16, dimension( * ) work,
double precision, dimension( * ) rwork,
integer info )

ZSPSVX computes the solution to system of linear equations A * X = B for OTHER matrices

Download ZSPSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZSPSVX uses the diagonal pivoting factorization A = U*D*U**T or !> A = L*D*L**T to compute the solution to a complex system of linear !> equations A * X = B, where A is an N-by-N symmetric matrix stored !> in packed format and X and B are N-by-NRHS matrices. !> !> Error bounds on the solution and a condition estimate are also !> provided. !>
Description:
!> !> The following steps are performed: !> !> 1. If FACT = 'N', the diagonal pivoting method is used to factor A as !> A = U * D * U**T, if UPLO = 'U', or !> A = L * D * L**T, if UPLO = 'L', !> where U (or L) is a product of permutation and unit upper (lower) !> triangular matrices and D is symmetric and block diagonal with !> 1-by-1 and 2-by-2 diagonal blocks. !> !> 2. If some D(i,i)=0, so that D is exactly singular, then the routine !> returns with INFO = i. Otherwise, the factored form of A is used !> to estimate the condition number of the matrix A. If the !> reciprocal of the condition number is less than machine precision, !> INFO = N+1 is returned as a warning, but the routine still goes on !> to solve for X and compute error bounds as described below. !> !> 3. The system of equations is solved for X using the factored form !> of A. !> !> 4. Iterative refinement is applied to improve the computed solution !> matrix and calculate error bounds and backward error estimates !> for it. !>
Parameters
[in]FACT
!> FACT is CHARACTER*1 !> Specifies whether or not the factored form of A has been !> supplied on entry. !> = 'F': On entry, AFP and IPIV contain the factored form !> of A. AP, AFP and IPIV will not be modified. !> = 'N': The matrix A will be copied to AFP and factored. !>
[in]UPLO
!> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !>
[in]N
!> N is INTEGER !> The number of linear equations, i.e., the order of the !> matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrices B and X. NRHS >= 0. !>
[in]AP
!> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangle of the symmetric matrix A, packed !> columnwise in a linear array. The j-th column of A is stored !> in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !> See below for further details. !>
[in,out]AFP
!> AFP is COMPLEX*16 array, dimension (N*(N+1)/2) !> If FACT = 'F', then AFP is an input argument and on entry !> contains the block diagonal matrix D and the multipliers used !> to obtain the factor U or L from the factorization !> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as !> a packed triangular matrix in the same storage format as A. !> !> If FACT = 'N', then AFP is an output argument and on exit !> contains the block diagonal matrix D and the multipliers used !> to obtain the factor U or L from the factorization !> A = U*D*U**T or A = L*D*L**T as computed by ZSPTRF, stored as !> a packed triangular matrix in the same storage format as A. !>
[in,out]IPIV
!> IPIV is INTEGER array, dimension (N) !> If FACT = 'F', then IPIV is an input argument and on entry !> contains details of the interchanges and the block structure !> of D, as determined by ZSPTRF. !> If IPIV(k) > 0, then rows and columns k and IPIV(k) were !> interchanged and D(k,k) is a 1-by-1 diagonal block. !> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and !> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) !> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = !> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were !> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. !> !> If FACT = 'N', then IPIV is an output argument and on exit !> contains details of the interchanges and the block structure !> of D, as determined by ZSPTRF. !>
[in]B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The N-by-NRHS right hand side matrix B. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]X
!> X is COMPLEX*16 array, dimension (LDX,NRHS) !> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. !>
[in]LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
[out]RCOND
!> RCOND is DOUBLE PRECISION !> The estimate of the reciprocal condition number of the matrix !> A. If RCOND is less than the machine precision (in !> particular, if RCOND = 0), the matrix is singular to working !> precision. This condition is indicated by a return code of !> INFO > 0. !>
[out]FERR
!> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !>
[out]BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension (2*N) !>
[out]RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is !> <= N: D(i,i) is exactly zero. The factorization !> has been completed but the factor D is exactly !> singular, so the solution and error bounds could !> not be computed. RCOND = 0 is returned. !> = N+1: D is nonsingular, but RCOND is less than machine !> precision, meaning that the matrix is singular !> to working precision. Nevertheless, the !> solution and error bounds are computed because !> there are a number of situations where the !> computed solution can be more accurate than the !> value of RCOND would suggest. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> The packed storage scheme is illustrated by the following example !> when N = 4, UPLO = 'U': !> !> Two-dimensional storage of the symmetric matrix A: !> !> a11 a12 a13 a14 !> a22 a23 a24 !> a33 a34 (aij = aji) !> a44 !> !> Packed storage of the upper triangle of A: !> !> AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] !>

Definition at line 273 of file zspsvx.f.

276*
277* -- LAPACK driver routine --
278* -- LAPACK is a software package provided by Univ. of Tennessee, --
279* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
280*
281* .. Scalar Arguments ..
282 CHARACTER FACT, UPLO
283 INTEGER INFO, LDB, LDX, N, NRHS
284 DOUBLE PRECISION RCOND
285* ..
286* .. Array Arguments ..
287 INTEGER IPIV( * )
288 DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
289 COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
290 $ X( LDX, * )
291* ..
292*
293* =====================================================================
294*
295* .. Parameters ..
296 DOUBLE PRECISION ZERO
297 parameter( zero = 0.0d+0 )
298* ..
299* .. Local Scalars ..
300 LOGICAL NOFACT
301 DOUBLE PRECISION ANORM
302* ..
303* .. External Functions ..
304 LOGICAL LSAME
305 DOUBLE PRECISION DLAMCH, ZLANSP
306 EXTERNAL lsame, dlamch, zlansp
307* ..
308* .. External Subroutines ..
309 EXTERNAL xerbla, zcopy, zlacpy, zspcon, zsprfs,
310 $ zsptrf,
311 $ zsptrs
312* ..
313* .. Intrinsic Functions ..
314 INTRINSIC max
315* ..
316* .. Executable Statements ..
317*
318* Test the input parameters.
319*
320 info = 0
321 nofact = lsame( fact, 'N' )
322 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
323 info = -1
324 ELSE IF( .NOT.lsame( uplo, 'U' ) .AND.
325 $ .NOT.lsame( uplo, 'L' ) )
326 $ THEN
327 info = -2
328 ELSE IF( n.LT.0 ) THEN
329 info = -3
330 ELSE IF( nrhs.LT.0 ) THEN
331 info = -4
332 ELSE IF( ldb.LT.max( 1, n ) ) THEN
333 info = -9
334 ELSE IF( ldx.LT.max( 1, n ) ) THEN
335 info = -11
336 END IF
337 IF( info.NE.0 ) THEN
338 CALL xerbla( 'ZSPSVX', -info )
339 RETURN
340 END IF
341*
342 IF( nofact ) THEN
343*
344* Compute the factorization A = U*D*U**T or A = L*D*L**T.
345*
346 CALL zcopy( n*( n+1 ) / 2, ap, 1, afp, 1 )
347 CALL zsptrf( uplo, n, afp, ipiv, info )
348*
349* Return if INFO is non-zero.
350*
351 IF( info.GT.0 )THEN
352 rcond = zero
353 RETURN
354 END IF
355 END IF
356*
357* Compute the norm of the matrix A.
358*
359 anorm = zlansp( 'I', uplo, n, ap, rwork )
360*
361* Compute the reciprocal of the condition number of A.
362*
363 CALL zspcon( uplo, n, afp, ipiv, anorm, rcond, work, info )
364*
365* Compute the solution vectors X.
366*
367 CALL zlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
368 CALL zsptrs( uplo, n, nrhs, afp, ipiv, x, ldx, info )
369*
370* Use iterative refinement to improve the computed solutions and
371* compute error bounds and backward error estimates for them.
372*
373 CALL zsprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
374 $ ferr,
375 $ berr, work, rwork, info )
376*
377* Set INFO = N+1 if the matrix is singular to working precision.
378*
379 IF( rcond.LT.dlamch( 'Epsilon' ) )
380 $ info = n + 1
381*
382 RETURN
383*
384* End of ZSPSVX
385*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zspcon(uplo, n, ap, ipiv, anorm, rcond, work, info)
ZSPCON
Definition zspcon.f:117
subroutine zsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZSPRFS
Definition zsprfs.f:179
subroutine zsptrf(uplo, n, ap, ipiv, info)
ZSPTRF
Definition zsptrf.f:156
subroutine zsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
ZSPTRS
Definition zsptrs.f:113
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlansp(norm, uplo, n, ap, work)
ZLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlansp.f:113
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: