SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pdpttrf.f
Go to the documentation of this file.
1 SUBROUTINE pdpttrf( N, D, E, JA, DESCA, AF, LAF, WORK, LWORK,
2 $ INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* April 3, 2000
8*
9* .. Scalar Arguments ..
10 INTEGER INFO, JA, LAF, LWORK, N
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * )
14 DOUBLE PRECISION AF( * ), D( * ), E( * ), WORK( * )
15* ..
16*
17*
18* Purpose
19* =======
20*
21* PDPTTRF computes a Cholesky factorization
22* of an N-by-N real tridiagonal
23* symmetric positive definite distributed matrix
24* A(1:N, JA:JA+N-1).
25* Reordering is used to increase parallelism in the factorization.
26* This reordering results in factors that are DIFFERENT from those
27* produced by equivalent sequential codes. These factors cannot
28* be used directly by users; however, they can be used in
29* subsequent calls to PDPTTRS to solve linear systems.
30*
31* The factorization has the form
32*
33* P A(1:N, JA:JA+N-1) P^T = U' D U or
34*
35* P A(1:N, JA:JA+N-1) P^T = L D L',
36*
37* where U is a tridiagonal upper triangular matrix and L is tridiagonal
38* lower triangular, and P is a permutation matrix.
39*
40* =====================================================================
41*
42* Arguments
43* =========
44*
45*
46* N (global input) INTEGER
47* The number of rows and columns to be operated on, i.e. the
48* order of the distributed submatrix A(1:N, JA:JA+N-1). N >= 0.
49*
50* D (local input/local output) DOUBLE PRECISION pointer to local
51* part of global vector storing the main diagonal of the
52* matrix.
53* On exit, this array contains information containing the
54* factors of the matrix.
55* Must be of size >= DESCA( NB_ ).
56*
57* E (local input/local output) DOUBLE PRECISION pointer to local
58* part of global vector storing the upper diagonal of the
59* matrix. Globally, DU(n) is not referenced, and DU must be
60* aligned with D.
61* On exit, this array contains information containing the
62* factors of the matrix.
63* Must be of size >= DESCA( NB_ ).
64*
65* JA (global input) INTEGER
66* The index in the global array A that points to the start of
67* the matrix to be operated on (which may be either all of A
68* or a submatrix of A).
69*
70* DESCA (global and local input) INTEGER array of dimension DLEN.
71* if 1D type (DTYPE_A=501 or 502), DLEN >= 7;
72* if 2D type (DTYPE_A=1), DLEN >= 9.
73* The array descriptor for the distributed matrix A.
74* Contains information of mapping of A to memory. Please
75* see NOTES below for full description and options.
76*
77* AF (local output) DOUBLE PRECISION array, dimension LAF.
78* Auxiliary Fillin Space.
79* Fillin is created during the factorization routine
80* PDPTTRF and this is stored in AF. If a linear system
81* is to be solved using PDPTTRS after the factorization
82* routine, AF *must not be altered* after the factorization.
83*
84* LAF (local input) INTEGER
85* Size of user-input Auxiliary Fillin space AF. Must be >=
86* (NB+2)
87* If LAF is not large enough, an error code will be returned
88* and the minimum acceptable size will be returned in AF( 1 )
89*
90* WORK (local workspace/local output)
91* DOUBLE PRECISION temporary workspace. This space may
92* be overwritten in between calls to routines. WORK must be
93* the size given in LWORK.
94* On exit, WORK( 1 ) contains the minimal LWORK.
95*
96* LWORK (local input or global input) INTEGER
97* Size of user-input workspace WORK.
98* If LWORK is too small, the minimal acceptable size will be
99* returned in WORK(1) and an error code is returned. LWORK>=
100* 8*NPCOL
101*
102* INFO (local output) INTEGER
103* = 0: successful exit
104* < 0: If the i-th argument is an array and the j-entry had
105* an illegal value, then INFO = -(i*100+j), if the i-th
106* argument is a scalar and had an illegal value, then
107* INFO = -i.
108* > 0: If INFO = K<=NPROCS, the submatrix stored on processor
109* INFO and factored locally was not
110* positive definite, and
111* the factorization was not completed.
112* If INFO = K>NPROCS, the submatrix stored on processor
113* INFO-NPROCS representing interactions with other
114* processors was not
115* positive definite,
116* and the factorization was not completed.
117*
118* =====================================================================
119*
120*
121* Restrictions
122* ============
123*
124* The following are restrictions on the input parameters. Some of these
125* are temporary and will be removed in future releases, while others
126* may reflect fundamental technical limitations.
127*
128* Non-cyclic restriction: VERY IMPORTANT!
129* P*NB>= mod(JA-1,NB)+N.
130* The mapping for matrices must be blocked, reflecting the nature
131* of the divide and conquer algorithm as a task-parallel algorithm.
132* This formula in words is: no processor may have more than one
133* chunk of the matrix.
134*
135* Blocksize cannot be too small:
136* If the matrix spans more than one processor, the following
137* restriction on NB, the size of each block on each processor,
138* must hold:
139* NB >= 2
140* The bulk of parallel computation is done on the matrix of size
141* O(NB) on each processor. If this is too small, divide and conquer
142* is a poor choice of algorithm.
143*
144* Submatrix reference:
145* JA = IB
146* Alignment restriction that prevents unnecessary communication.
147*
148*
149* =====================================================================
150*
151*
152* Notes
153* =====
154*
155* If the factorization routine and the solve routine are to be called
156* separately (to solve various sets of righthand sides using the same
157* coefficient matrix), the auxiliary space AF *must not be altered*
158* between calls to the factorization routine and the solve routine.
159*
160* The best algorithm for solving banded and tridiagonal linear systems
161* depends on a variety of parameters, especially the bandwidth.
162* Currently, only algorithms designed for the case N/P >> bw are
163* implemented. These go by many names, including Divide and Conquer,
164* Partitioning, domain decomposition-type, etc.
165* For tridiagonal matrices, it is obvious: N/P >> bw(=1), and so D&C
166* algorithms are the appropriate choice.
167*
168* Algorithm description: Divide and Conquer
169*
170* The Divide and Conqer algorithm assumes the matrix is narrowly
171* banded compared with the number of equations. In this situation,
172* it is best to distribute the input matrix A one-dimensionally,
173* with columns atomic and rows divided amongst the processes.
174* The basic algorithm divides the tridiagonal matrix up into
175* P pieces with one stored on each processor,
176* and then proceeds in 2 phases for the factorization or 3 for the
177* solution of a linear system.
178* 1) Local Phase:
179* The individual pieces are factored independently and in
180* parallel. These factors are applied to the matrix creating
181* fillin, which is stored in a non-inspectable way in auxiliary
182* space AF. Mathematically, this is equivalent to reordering
183* the matrix A as P A P^T and then factoring the principal
184* leading submatrix of size equal to the sum of the sizes of
185* the matrices factored on each processor. The factors of
186* these submatrices overwrite the corresponding parts of A
187* in memory.
188* 2) Reduced System Phase:
189* A small ((P-1)) system is formed representing
190* interaction of the larger blocks, and is stored (as are its
191* factors) in the space AF. A parallel Block Cyclic Reduction
192* algorithm is used. For a linear system, a parallel front solve
193* followed by an analagous backsolve, both using the structure
194* of the factored matrix, are performed.
195* 3) Backsubsitution Phase:
196* For a linear system, a local backsubstitution is performed on
197* each processor in parallel.
198*
199*
200* Descriptors
201* ===========
202*
203* Descriptors now have *types* and differ from ScaLAPACK 1.0.
204*
205* Note: tridiagonal codes can use either the old two dimensional
206* or new one-dimensional descriptors, though the processor grid in
207* both cases *must be one-dimensional*. We describe both types below.
208*
209* Each global data object is described by an associated description
210* vector. This vector stores the information required to establish
211* the mapping between an object element and its corresponding process
212* and memory location.
213*
214* Let A be a generic term for any 2D block cyclicly distributed array.
215* Such a global array has an associated description vector DESCA.
216* In the following comments, the character _ should be read as
217* "of the global array".
218*
219* NOTATION STORED IN EXPLANATION
220* --------------- -------------- --------------------------------------
221* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
222* DTYPE_A = 1.
223* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
224* the BLACS process grid A is distribu-
225* ted over. The context itself is glo-
226* bal, but the handle (the integer
227* value) may vary.
228* M_A (global) DESCA( M_ ) The number of rows in the global
229* array A.
230* N_A (global) DESCA( N_ ) The number of columns in the global
231* array A.
232* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
233* the rows of the array.
234* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
235* the columns of the array.
236* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
237* row of the array A is distributed.
238* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
239* first column of the array A is
240* distributed.
241* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
242* array. LLD_A >= MAX(1,LOCr(M_A)).
243*
244* Let K be the number of rows or columns of a distributed matrix,
245* and assume that its process grid has dimension p x q.
246* LOCr( K ) denotes the number of elements of K that a process
247* would receive if K were distributed over the p processes of its
248* process column.
249* Similarly, LOCc( K ) denotes the number of elements of K that a
250* process would receive if K were distributed over the q processes of
251* its process row.
252* The values of LOCr() and LOCc() may be determined via a call to the
253* ScaLAPACK tool function, NUMROC:
254* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
255* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
256* An upper bound for these quantities may be computed by:
257* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
258* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
259*
260*
261* One-dimensional descriptors:
262*
263* One-dimensional descriptors are a new addition to ScaLAPACK since
264* version 1.0. They simplify and shorten the descriptor for 1D
265* arrays.
266*
267* Since ScaLAPACK supports two-dimensional arrays as the fundamental
268* object, we allow 1D arrays to be distributed either over the
269* first dimension of the array (as if the grid were P-by-1) or the
270* 2nd dimension (as if the grid were 1-by-P). This choice is
271* indicated by the descriptor type (501 or 502)
272* as described below.
273* However, for tridiagonal matrices, since the objects being
274* distributed are the individual vectors storing the diagonals, we
275* have adopted the convention that both the P-by-1 descriptor and
276* the 1-by-P descriptor are allowed and are equivalent for
277* tridiagonal matrices. Thus, for tridiagonal matrices,
278* DTYPE_A = 501 or 502 can be used interchangeably
279* without any other change.
280* We require that the distributed vectors storing the diagonals of a
281* tridiagonal matrix be aligned with each other. Because of this, a
282* single descriptor, DESCA, serves to describe the distribution of
283* of all diagonals simultaneously.
284*
285* IMPORTANT NOTE: the actual BLACS grid represented by the
286* CTXT entry in the descriptor may be *either* P-by-1 or 1-by-P
287* irrespective of which one-dimensional descriptor type
288* (501 or 502) is input.
289* This routine will interpret the grid properly either way.
290* ScaLAPACK routines *do not support intercontext operations* so that
291* the grid passed to a single ScaLAPACK routine *must be the same*
292* for all array descriptors passed to that routine.
293*
294* NOTE: In all cases where 1D descriptors are used, 2D descriptors
295* may also be used, since a one-dimensional array is a special case
296* of a two-dimensional array with one dimension of size unity.
297* The two-dimensional array used in this case *must* be of the
298* proper orientation:
299* If the appropriate one-dimensional descriptor is DTYPEA=501
300* (1 by P type), then the two dimensional descriptor must
301* have a CTXT value that refers to a 1 by P BLACS grid;
302* If the appropriate one-dimensional descriptor is DTYPEA=502
303* (P by 1 type), then the two dimensional descriptor must
304* have a CTXT value that refers to a P by 1 BLACS grid.
305*
306*
307* Summary of allowed descriptors, types, and BLACS grids:
308* DTYPE 501 502 1 1
309* BLACS grid 1xP or Px1 1xP or Px1 1xP Px1
310* -----------------------------------------------------
311* A OK OK OK NO
312* B NO OK NO OK
313*
314* Let A be a generic term for any 1D block cyclicly distributed array.
315* Such a global array has an associated description vector DESCA.
316* In the following comments, the character _ should be read as
317* "of the global array".
318*
319* NOTATION STORED IN EXPLANATION
320* --------------- ---------- ------------------------------------------
321* DTYPE_A(global) DESCA( 1 ) The descriptor type. For 1D grids,
322* TYPE_A = 501: 1-by-P grid.
323* TYPE_A = 502: P-by-1 grid.
324* CTXT_A (global) DESCA( 2 ) The BLACS context handle, indicating
325* the BLACS process grid A is distribu-
326* ted over. The context itself is glo-
327* bal, but the handle (the integer
328* value) may vary.
329* N_A (global) DESCA( 3 ) The size of the array dimension being
330* distributed.
331* NB_A (global) DESCA( 4 ) The blocking factor used to distribute
332* the distributed dimension of the array.
333* SRC_A (global) DESCA( 5 ) The process row or column over which the
334* first row or column of the array
335* is distributed.
336* Ignored DESCA( 6 ) Ignored for tridiagonal matrices.
337* Reserved DESCA( 7 ) Reserved for future use.
338*
339*
340*
341* =====================================================================
342*
343* Code Developer: Andrew J. Cleary, University of Tennessee.
344* Current address: Lawrence Livermore National Labs.
345*
346* =====================================================================
347*
348* .. Parameters ..
349 DOUBLE PRECISION ONE
350 parameter( one = 1.0d+0 )
351 DOUBLE PRECISION ZERO
352 parameter( zero = 0.0d+0 )
353 INTEGER INT_ONE
354 parameter( int_one = 1 )
355 INTEGER DESCMULT, BIGNUM
356 parameter( descmult = 100, bignum = descmult*descmult )
357 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
358 $ lld_, mb_, m_, nb_, n_, rsrc_
359 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
360 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
361 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
362* ..
363* .. Local Scalars ..
364 INTEGER COMM_PROC, CSRC, FIRST_PROC, I, ICTXT,
365 $ ictxt_new, ictxt_save, idum3, int_temp, ja_new,
366 $ laf_min, level_dist, llda, mycol, myrow,
367 $ my_num_cols, nb, np, npcol, nprow, np_save,
368 $ odd_size, part_offset, part_size, return_code,
369 $ store_n_a, temp, work_size_min
370* ..
371* .. Local Arrays ..
372 INTEGER DESCA_1XP( 7 ), PARAM_CHECK( 7, 3 )
373* ..
374* .. External Subroutines ..
375 EXTERNAL blacs_gridexit, blacs_gridinfo, desc_convert,
376 $ dgerv2d, dgesd2d, dpttrf, dpttrsv, dtrrv2d,
377 $ dtrsd2d, globchk, igamx2d, igebr2d, igebs2d,
379* ..
380* .. External Functions ..
381 INTEGER NUMROC
382 EXTERNAL numroc
383* ..
384* .. Intrinsic Functions ..
385 INTRINSIC dble, mod
386* ..
387* .. Executable Statements ..
388*
389* Test the input parameters
390*
391 info = 0
392*
393* Convert descriptor into standard form for easy access to
394* parameters, check that grid is of right shape.
395*
396 desca_1xp( 1 ) = 501
397*
398 temp = desca( dtype_ )
399 IF( temp.EQ.502 ) THEN
400* Temporarily set the descriptor type to 1xP type
401 desca( dtype_ ) = 501
402 END IF
403*
404 CALL desc_convert( desca, desca_1xp, return_code )
405*
406 desca( dtype_ ) = temp
407*
408 IF( return_code.NE.0 ) THEN
409 info = -( 5*100+2 )
410 END IF
411*
412* Get values out of descriptor for use in code.
413*
414 ictxt = desca_1xp( 2 )
415 csrc = desca_1xp( 5 )
416 nb = desca_1xp( 4 )
417 llda = desca_1xp( 6 )
418 store_n_a = desca_1xp( 3 )
419*
420* Get grid parameters
421*
422*
423 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
424 np = nprow*npcol
425*
426*
427*
428 IF( lwork.LT.-1 ) THEN
429 info = -9
430 ELSE IF( lwork.EQ.-1 ) THEN
431 idum3 = -1
432 ELSE
433 idum3 = 1
434 END IF
435*
436 IF( n.LT.0 ) THEN
437 info = -1
438 END IF
439*
440 IF( n+ja-1.GT.store_n_a ) THEN
441 info = -( 5*100+6 )
442 END IF
443*
444* Argument checking that is specific to Divide & Conquer routine
445*
446 IF( nprow.NE.1 ) THEN
447 info = -( 5*100+2 )
448 END IF
449*
450 IF( n.GT.np*nb-mod( ja-1, nb ) ) THEN
451 info = -( 1 )
452 CALL pxerbla( ictxt, 'PDPTTRF, D&C alg.: only 1 block per proc'
453 $ , -info )
454 RETURN
455 END IF
456*
457 IF( ( ja+n-1.GT.nb ) .AND. ( nb.LT.2*int_one ) ) THEN
458 info = -( 5*100+4 )
459 CALL pxerbla( ictxt, 'PDPTTRF, D&C alg.: NB too small', -info )
460 RETURN
461 END IF
462*
463*
464* Check auxiliary storage size
465*
466 laf_min = ( 12*npcol+3*nb )
467*
468 IF( laf.LT.laf_min ) THEN
469 info = -7
470* put minimum value of laf into AF( 1 )
471 af( 1 ) = laf_min
472 CALL pxerbla( ictxt, 'PDPTTRF: auxiliary storage error ',
473 $ -info )
474 RETURN
475 END IF
476*
477* Check worksize
478*
479 work_size_min = 8*npcol
480*
481 work( 1 ) = work_size_min
482*
483 IF( lwork.LT.work_size_min ) THEN
484 IF( lwork.NE.-1 ) THEN
485 info = -9
486 CALL pxerbla( ictxt, 'PDPTTRF: worksize error ', -info )
487 END IF
488 RETURN
489 END IF
490*
491* Pack params and positions into arrays for global consistency check
492*
493 param_check( 7, 1 ) = desca( 5 )
494 param_check( 6, 1 ) = desca( 4 )
495 param_check( 5, 1 ) = desca( 3 )
496 param_check( 4, 1 ) = desca( 1 )
497 param_check( 3, 1 ) = ja
498 param_check( 2, 1 ) = n
499 param_check( 1, 1 ) = idum3
500*
501 param_check( 7, 2 ) = 505
502 param_check( 6, 2 ) = 504
503 param_check( 5, 2 ) = 503
504 param_check( 4, 2 ) = 501
505 param_check( 3, 2 ) = 4
506 param_check( 2, 2 ) = 1
507 param_check( 1, 2 ) = 9
508*
509* Want to find errors with MIN( ), so if no error, set it to a big
510* number. If there already is an error, multiply by the the
511* descriptor multiplier.
512*
513 IF( info.GE.0 ) THEN
514 info = bignum
515 ELSE IF( info.LT.-descmult ) THEN
516 info = -info
517 ELSE
518 info = -info*descmult
519 END IF
520*
521* Check consistency across processors
522*
523 CALL globchk( ictxt, 7, param_check, 7, param_check( 1, 3 ),
524 $ info )
525*
526* Prepare output: set info = 0 if no error, and divide by DESCMULT
527* if error is not in a descriptor entry.
528*
529 IF( info.EQ.bignum ) THEN
530 info = 0
531 ELSE IF( mod( info, descmult ).EQ.0 ) THEN
532 info = -info / descmult
533 ELSE
534 info = -info
535 END IF
536*
537 IF( info.LT.0 ) THEN
538 CALL pxerbla( ictxt, 'PDPTTRF', -info )
539 RETURN
540 END IF
541*
542* Quick return if possible
543*
544 IF( n.EQ.0 )
545 $ RETURN
546*
547*
548* Adjust addressing into matrix space to properly get into
549* the beginning part of the relevant data
550*
551 part_offset = nb*( ( ja-1 ) / ( npcol*nb ) )
552*
553 IF( ( mycol-csrc ).LT.( ja-part_offset-1 ) / nb ) THEN
554 part_offset = part_offset + nb
555 END IF
556*
557 IF( mycol.LT.csrc ) THEN
558 part_offset = part_offset - nb
559 END IF
560*
561* Form a new BLACS grid (the "standard form" grid) with only procs
562* holding part of the matrix, of size 1xNP where NP is adjusted,
563* starting at csrc=0, with JA modified to reflect dropped procs.
564*
565* First processor to hold part of the matrix:
566*
567 first_proc = mod( ( ja-1 ) / nb+csrc, npcol )
568*
569* Calculate new JA one while dropping off unused processors.
570*
571 ja_new = mod( ja-1, nb ) + 1
572*
573* Save and compute new value of NP
574*
575 np_save = np
576 np = ( ja_new+n-2 ) / nb + 1
577*
578* Call utility routine that forms "standard-form" grid
579*
580 CALL reshape( ictxt, int_one, ictxt_new, int_one, first_proc,
581 $ int_one, np )
582*
583* Use new context from standard grid as context.
584*
585 ictxt_save = ictxt
586 ictxt = ictxt_new
587 desca_1xp( 2 ) = ictxt_new
588*
589* Get information about new grid.
590*
591 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
592*
593* Drop out processors that do not have part of the matrix.
594*
595 IF( myrow.LT.0 ) THEN
596 GO TO 90
597 END IF
598*
599* ********************************
600* Values reused throughout routine
601*
602* User-input value of partition size
603*
604 part_size = nb
605*
606* Number of columns in each processor
607*
608 my_num_cols = numroc( n, part_size, mycol, 0, npcol )
609*
610* Offset in columns to beginning of main partition in each proc
611*
612 IF( mycol.EQ.0 ) THEN
613 part_offset = part_offset + mod( ja_new-1, part_size )
614 my_num_cols = my_num_cols - mod( ja_new-1, part_size )
615 END IF
616*
617* Size of main (or odd) partition in each processor
618*
619 odd_size = my_num_cols
620 IF( mycol.LT.np-1 ) THEN
621 odd_size = odd_size - int_one
622 END IF
623*
624*
625* Zero out space for fillin
626*
627 DO 10 i = 1, laf_min
628 af( i ) = zero
629 10 CONTINUE
630*
631* Begin main code
632*
633*
634********************************************************************
635* PHASE 1: Local computation phase.
636********************************************************************
637*
638*
639 IF( mycol.LT.np-1 ) THEN
640* Transfer last triangle D_i of local matrix to next processor
641* which needs it to calculate fillin due to factorization of
642* its main (odd) block A_i.
643* Overlap the send with the factorization of A_i.
644*
645 CALL dtrsd2d( ictxt, 'U', 'N', 1, 1,
646 $ e( part_offset+odd_size+1 ), llda-1, 0, mycol+1 )
647*
648 END IF
649*
650*
651* Factor main partition A_i = L_i {L_i}^T in each processor
652* Or A_i = {U_i}^T {U_i} if E is the upper superdiagonal
653*
654 CALL dpttrf( odd_size, d( part_offset+1 ), e( part_offset+1 ),
655 $ info )
656*
657 IF( info.NE.0 ) THEN
658 info = mycol + 1
659 GO TO 20
660 END IF
661*
662*
663 IF( mycol.LT.np-1 ) THEN
664* Apply factorization to odd-even connection block B_i
665*
666*
667* Perform the triangular system solve {L_i}{{B'}_i}^T = {B_i}^T
668* by dividing B_i by diagonal element
669*
670 e( part_offset+odd_size ) = e( part_offset+odd_size ) /
671 $ d( part_offset+odd_size )
672*
673*
674*
675* Compute contribution to diagonal block(s) of reduced system.
676* {C'}_i = {C_i}-{{B'}_i}{{B'}_i}^T
677*
678 d( part_offset+odd_size+1 ) = d( part_offset+odd_size+1 ) -
679 $ d( part_offset+odd_size )*
680 $ ( e( part_offset+odd_size )*
681 $ ( e( part_offset+odd_size ) ) )
682*
683 END IF
684* End of "if ( MYCOL .lt. NP-1 )..." loop
685*
686*
687 20 CONTINUE
688* If the processor could not locally factor, it jumps here.
689*
690 IF( mycol.NE.0 ) THEN
691*
692* Receive previously transmitted matrix section, which forms
693* the right-hand-side for the triangular solve that calculates
694* the "spike" fillin.
695*
696*
697 CALL dtrrv2d( ictxt, 'U', 'N', 1, 1, af( 1 ), odd_size, 0,
698 $ mycol-1 )
699*
700 IF( info.EQ.0 ) THEN
701*
702* Calculate the "spike" fillin, ${L_i} {{G}_i}^T = {D_i}$ .
703*
704 CALL dpttrsv( 'N', odd_size, int_one, d( part_offset+1 ),
705 $ e( part_offset+1 ), af( 1 ), odd_size, info )
706*
707* Divide by D
708*
709 DO 30 i = 1, odd_size
710 af( i ) = af( i ) / d( part_offset+i )
711 30 CONTINUE
712*
713*
714* Calculate the update block for previous proc, E_i = G_i{G_i}^T
715*
716*
717* Since there is no element-by-element vector multiplication in
718* the BLAS, this loop must be hardwired in without a BLAS call
719*
720 int_temp = odd_size*int_one + 2 + 1
721 af( int_temp ) = 0
722*
723 DO 40 i = 1, odd_size
724 af( int_temp ) = af( int_temp ) -
725 $ d( part_offset+i )*( af( i )*
726 $ ( af( i ) ) )
727 40 CONTINUE
728*
729*
730* Initiate send of E_i to previous processor to overlap
731* with next computation.
732*
733 CALL dgesd2d( ictxt, int_one, int_one, af( odd_size+3 ),
734 $ int_one, 0, mycol-1 )
735*
736*
737 IF( mycol.LT.np-1 ) THEN
738*
739* Calculate off-diagonal block(s) of reduced system.
740* Note: for ease of use in solution of reduced system, store
741* L's off-diagonal block in transpose form.
742* {F_i}^T = {H_i}{{B'}_i}^T
743*
744 af( odd_size+1 ) = -d( part_offset+odd_size )*
745 $ ( e( part_offset+odd_size )*
746 $ af( odd_size ) )
747*
748*
749 END IF
750*
751 END IF
752* End of "if ( MYCOL .ne. 0 )..."
753*
754 END IF
755* End of "if (info.eq.0) then"
756*
757*
758* Check to make sure no processors have found errors
759*
760 CALL igamx2d( ictxt, 'A', ' ', 1, 1, info, 1, info, info, -1, 0,
761 $ 0 )
762*
763 IF( mycol.EQ.0 ) THEN
764 CALL igebs2d( ictxt, 'A', ' ', 1, 1, info, 1 )
765 ELSE
766 CALL igebr2d( ictxt, 'A', ' ', 1, 1, info, 1, 0, 0 )
767 END IF
768*
769 IF( info.NE.0 ) THEN
770 GO TO 80
771 END IF
772* No errors found, continue
773*
774*
775********************************************************************
776* PHASE 2: Formation and factorization of Reduced System.
777********************************************************************
778*
779* Gather up local sections of reduced system
780*
781*
782* The last processor does not participate in the factorization of
783* the reduced system, having sent its E_i already.
784 IF( mycol.EQ.npcol-1 ) THEN
785 GO TO 70
786 END IF
787*
788* Initiate send of off-diag block(s) to overlap with next part.
789* Off-diagonal block needed on neighboring processor to start
790* algorithm.
791*
792 IF( ( mod( mycol+1, 2 ).EQ.0 ) .AND. ( mycol.GT.0 ) ) THEN
793*
794 CALL dgesd2d( ictxt, int_one, int_one, af( odd_size+1 ),
795 $ int_one, 0, mycol-1 )
796*
797 END IF
798*
799* Copy last diagonal block into AF storage for subsequent
800* operations.
801*
802 af( odd_size+2 ) = dble( d( part_offset+odd_size+1 ) )
803*
804* Receive cont. to diagonal block that is stored on this proc.
805*
806 IF( mycol.LT.npcol-1 ) THEN
807*
808 CALL dgerv2d( ictxt, int_one, int_one, af( odd_size+2+1 ),
809 $ int_one, 0, mycol+1 )
810*
811* Add contribution to diagonal block
812*
813 af( odd_size+2 ) = af( odd_size+2 ) + af( odd_size+3 )
814*
815 END IF
816*
817*
818* *************************************
819* Modification Loop
820*
821* The distance for sending and receiving for each level starts
822* at 1 for the first level.
823 level_dist = 1
824*
825* Do until this proc is needed to modify other procs' equations
826*
827 50 CONTINUE
828 IF( mod( ( mycol+1 ) / level_dist, 2 ).NE.0 )
829 $ GO TO 60
830*
831* Receive and add contribution to diagonal block from the left
832*
833 IF( mycol-level_dist.GE.0 ) THEN
834 CALL dgerv2d( ictxt, int_one, int_one, work( 1 ), int_one, 0,
835 $ mycol-level_dist )
836*
837 af( odd_size+2 ) = af( odd_size+2 ) + work( 1 )
838*
839 END IF
840*
841* Receive and add contribution to diagonal block from the right
842*
843 IF( mycol+level_dist.LT.npcol-1 ) THEN
844 CALL dgerv2d( ictxt, int_one, int_one, work( 1 ), int_one, 0,
845 $ mycol+level_dist )
846*
847 af( odd_size+2 ) = af( odd_size+2 ) + work( 1 )
848*
849 END IF
850*
851 level_dist = level_dist*2
852*
853 GO TO 50
854 60 CONTINUE
855* [End of GOTO Loop]
856*
857*
858* *********************************
859* Calculate and use this proc's blocks to modify other procs'...
860 IF( af( odd_size+2 ).EQ.zero ) THEN
861 info = npcol + mycol
862 END IF
863*
864* ****************************************************************
865* Receive offdiagonal block from processor to right.
866* If this is the first group of processors, the receive comes
867* from a different processor than otherwise.
868*
869 IF( level_dist.EQ.1 ) THEN
870 comm_proc = mycol + 1
871*
872* Move block into place that it will be expected to be for
873* calcs.
874*
875 af( odd_size+3 ) = af( odd_size+1 )
876*
877 ELSE
878 comm_proc = mycol + level_dist / 2
879 END IF
880*
881 IF( mycol / level_dist.LE.( npcol-1 ) / level_dist-2 ) THEN
882*
883 CALL dgerv2d( ictxt, int_one, int_one, af( odd_size+1 ),
884 $ int_one, 0, comm_proc )
885*
886 IF( info.EQ.0 ) THEN
887*
888*
889* Modify upper off_diagonal block with diagonal block
890*
891*
892 af( odd_size+1 ) = af( odd_size+1 ) / af( odd_size+2 )
893*
894 END IF
895* End of "if ( info.eq.0 ) then"
896*
897* Calculate contribution from this block to next diagonal block
898*
899 work( 1 ) = -one*af( odd_size+1 )*af( odd_size+2 )*
900 $ ( af( odd_size+1 ) )
901*
902* Send contribution to diagonal block's owning processor.
903*
904 CALL dgesd2d( ictxt, int_one, int_one, work( 1 ), int_one, 0,
905 $ mycol+level_dist )
906*
907 END IF
908* End of "if( mycol/level_dist .le. (npcol-1)/level_dist-2 )..."
909*
910*
911* ****************************************************************
912* Receive off_diagonal block from left and use to finish with this
913* processor.
914*
915 IF( ( mycol / level_dist.GT.0 ) .AND.
916 $ ( mycol / level_dist.LE.( npcol-1 ) / level_dist-1 ) ) THEN
917*
918 IF( level_dist.GT.1 ) THEN
919*
920* Receive offdiagonal block(s) from proc level_dist/2 to the
921* left
922*
923 CALL dgerv2d( ictxt, int_one, int_one, af( odd_size+2+1 ),
924 $ int_one, 0, mycol-level_dist / 2 )
925*
926 END IF
927*
928*
929 IF( info.EQ.0 ) THEN
930*
931* Use diagonal block(s) to modify this offdiagonal block
932*
933 af( odd_size+3 ) = ( af( odd_size+3 ) ) / af( odd_size+2 )
934*
935 END IF
936* End of "if( info.eq.0 ) then"
937*
938* Use offdiag block(s) to calculate modification to diag block
939* of processor to the left
940*
941 work( 1 ) = -one*af( odd_size+3 )*af( odd_size+2 )*
942 $ ( af( odd_size+3 ) )
943*
944* Send contribution to diagonal block's owning processor.
945*
946 CALL dgesd2d( ictxt, int_one, int_one, work( 1 ), int_one, 0,
947 $ mycol-level_dist )
948*
949* *******************************************************
950*
951 IF( mycol / level_dist.LE.( npcol-1 ) / level_dist-2 ) THEN
952*
953* Decide which processor offdiagonal block(s) goes to
954*
955 IF( ( mod( mycol / ( 2*level_dist ), 2 ) ).EQ.0 ) THEN
956 comm_proc = mycol + level_dist
957 ELSE
958 comm_proc = mycol - level_dist
959 END IF
960*
961* Use offdiagonal blocks to calculate offdiag
962* block to send to neighboring processor. Depending
963* on circumstances, may need to transpose the matrix.
964*
965 work( 1 ) = -one*af( odd_size+3 )*af( odd_size+2 )*
966 $ af( odd_size+1 )
967*
968* Send contribution to offdiagonal block's owning processor.
969*
970 CALL dgesd2d( ictxt, int_one, int_one, work( 1 ), int_one,
971 $ 0, comm_proc )
972*
973 END IF
974*
975 END IF
976* End of "if( mycol/level_dist.le. (npcol-1)/level_dist -1 )..."
977*
978 70 CONTINUE
979*
980*
981 80 CONTINUE
982*
983*
984* Free BLACS space used to hold standard-form grid.
985*
986 IF( ictxt_save.NE.ictxt_new ) THEN
987 CALL blacs_gridexit( ictxt_new )
988 END IF
989*
990 90 CONTINUE
991*
992* Restore saved input parameters
993*
994 ictxt = ictxt_save
995 np = np_save
996*
997* Output minimum worksize
998*
999 work( 1 ) = work_size_min
1000*
1001* Make INFO consistent across processors
1002*
1003 CALL igamx2d( ictxt, 'A', ' ', 1, 1, info, 1, info, info, -1, 0,
1004 $ 0 )
1005*
1006 IF( mycol.EQ.0 ) THEN
1007 CALL igebs2d( ictxt, 'A', ' ', 1, 1, info, 1 )
1008 ELSE
1009 CALL igebr2d( ictxt, 'A', ' ', 1, 1, info, 1, 0, 0 )
1010 END IF
1011*
1012*
1013 RETURN
1014*
1015* End of PDPTTRF
1016*
1017 END
subroutine desc_convert(desc_in, desc_out, info)
Definition desc_convert.f:2
subroutine dpttrsv(trans, n, nrhs, d, e, b, ldb, info)
Definition dpttrsv.f:3
subroutine globchk(ictxt, n, x, ldx, iwork, info)
Definition pchkxmat.f:403
subroutine pdpttrf(n, d, e, ja, desca, af, laf, work, lwork, info)
Definition pdpttrf.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2
void reshape(Int *context_in, Int *major_in, Int *context_out, Int *major_out, Int *first_proc, Int *nprow_new, Int *npcol_new)
Definition reshape.c:80