next up previous contents index
Next: Examples Up: Standard Singular Value Problems Previous: Purpose   Contents   Index

Arguments

A
(input/output) REAL or COMPLEX array, shape $(:,:)$ with $size({\bf A},1) = m$ and $size({\bf A},2) = n$.
On entry, the matrix $A$.
On exit, if JOB = 'U' and U is not present, then A is overwritten with the first $\min(m,n)$ columns of $U$ (the left singular vectors, stored columnwise).
If JOB = 'V' and VT is not present, then A is overwritten with the first $\min(m,n)$ rows of $V^H$ (the right singular vectors, stored rowwise).
In all cases the original contents of A are destroyed.

S
(output) REAL array, shape $(:)$ with $size({\bf S}) = \min(m,n)$.
The singular values of $A$, sorted so that ${\bf S}_i \geq
{\bf S}_{i+1}$.

U
Optional (output) REAL or COMPLEX array, shape $(:,:)$ with $size({\bf U},1) = m$ and $size({\bf U},2) = m$ or $\min(m,n)$.
If $size({\bf U},2) = m$, U contains the $m \times m$ matrix $U$.
If $size({\bf U},2) = \min(m,n)$, U contains the first $\min(m,n)$ columns of $U$ (the left singular vectors, stored columnwise).

VT
Optional (output) REAL or COMPLEX array, shape $(:,:)$ with $size({\bf VT},1) = n$ or $\min(m,n)$ and $size({\bf VT},2) = n$.
If $size({\bf VT},1) = n$ , ${\bf VT}$ contains the $n\times n$ matrix $V^H$.
If $size({\bf VT},1) = \min(m,n)$, VT contains the first $\min(m,n)$ rows of $V^H$ (the right singular vectors, stored rowwise).

WW
Optional (output) REAL array, shape $(:)$ with $size({\bf WW}) = \min(m,n)-1$
If INFO $ > 0$, WW contains the unconverged superdiagonal elements of an upper bidiagonal matrix $B$ whose diagonal is in $\Sigma$ (not necessarily sorted). $B$ has the same singular values as $A$.

Note: WW is a dummy argument for LA_GESDD.

JOB
Optional (input) CHARACTER(LEN=1).

\begin{optionarg}
\item[{$ =$\ 'N':}] neither columns of $U$\ nor rows of $V^H$...
...H$\ (the right singular vectors) are returned in array {\bf A};
\end{optionarg}
Default value: 'N'.

INFO
Optional (output) INTEGER.

\begin{infoarg}
\item[{$=$\ 0:}] successful exit.
\item[{$<$\ 0:}] if {\bf INF...
... illegal value.
\item[{$>$\ 0:}] The algorithm did not converge.
\end{infoarg}
If INFO is not present and an error occurs, then the program is terminated with an error message.
References: [1, pages 20, 46, 66, 67, 94, 111, 113, 147, 158, 159, 188, 236, 238,] and [17,9,20].
next up previous contents index
Next: Examples Up: Standard Singular Value Problems Previous: Purpose   Contents   Index
Susan Blackford 2001-08-19