LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgetsqrhrt()

subroutine sgetsqrhrt ( integer  m,
integer  n,
integer  mb1,
integer  nb1,
integer  nb2,
real, dimension( lda, * )  a,
integer  lda,
real, dimension( ldt, * )  t,
integer  ldt,
real, dimension( * )  work,
integer  lwork,
integer  info 
)

SGETSQRHRT

Download SGETSQRHRT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SGETSQRHRT computes a NB2-sized column blocked QR-factorization
 of a complex M-by-N matrix A with M >= N,

    A = Q * R.

 The routine uses internally a NB1-sized column blocked and MB1-sized
 row blocked TSQR-factorization and perfors the reconstruction
 of the Householder vectors from the TSQR output. The routine also
 converts the R_tsqr factor from the TSQR-factorization output into
 the R factor that corresponds to the Householder QR-factorization,

    A = Q_tsqr * R_tsqr = Q * R.

 The output Q and R factors are stored in the same format as in SGEQRT
 (Q is in blocked compact WY-representation). See the documentation
 of SGEQRT for more details on the format.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A. M >= N >= 0.
[in]MB1
          MB1 is INTEGER
          The row block size to be used in the blocked TSQR.
          MB1 > N.
[in]NB1
          NB1 is INTEGER
          The column block size to be used in the blocked TSQR.
          N >= NB1 >= 1.
[in]NB2
          NB2 is INTEGER
          The block size to be used in the blocked QR that is
          output. NB2 >= 1.
[in,out]A
          A is REAL array, dimension (LDA,N)

          On entry: an M-by-N matrix A.

          On exit:
           a) the elements on and above the diagonal
              of the array contain the N-by-N upper-triangular
              matrix R corresponding to the Householder QR;
           b) the elements below the diagonal represent Q by
              the columns of blocked V (compact WY-representation).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is REAL array, dimension (LDT,N))
          The upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= NB2.
[out]WORK
          (workspace) REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          The dimension of the array WORK.
          LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ),
          where
             NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)),
             NB1LOCAL = MIN(NB1,N).
             LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL,
             LW1 = NB1LOCAL * N,
             LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ),
          If LWORK = -1, then a workspace query is assumed.
          The routine only calculates the optimal size of the WORK
          array, returns this value as the first entry of the WORK
          array, and no error message related to LWORK is issued
          by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
 November 2020, Igor Kozachenko,
                Computer Science Division,
                University of California, Berkeley

Definition at line 177 of file sgetsqrhrt.f.

179 IMPLICIT NONE
180*
181* -- LAPACK computational routine --
182* -- LAPACK is a software package provided by Univ. of Tennessee, --
183* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
184*
185* .. Scalar Arguments ..
186 INTEGER INFO, LDA, LDT, LWORK, M, N, NB1, NB2, MB1
187* ..
188* .. Array Arguments ..
189 REAL A( LDA, * ), T( LDT, * ), WORK( * )
190* ..
191*
192* =====================================================================
193*
194* .. Parameters ..
195 REAL ONE
196 parameter( one = 1.0e+0 )
197* ..
198* .. Local Scalars ..
199 LOGICAL LQUERY
200 INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT,
201 $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS
202* ..
203* .. External Functions ..
204 REAL SROUNDUP_LWORK
205 EXTERNAL sroundup_lwork
206* ..
207* .. External Subroutines ..
209 $ xerbla
210* ..
211* .. Intrinsic Functions ..
212 INTRINSIC ceiling, max, min
213* ..
214* .. Executable Statements ..
215*
216* Test the input arguments
217*
218 info = 0
219 lquery = lwork.EQ.-1
220 IF( m.LT.0 ) THEN
221 info = -1
222 ELSE IF( n.LT.0 .OR. m.LT.n ) THEN
223 info = -2
224 ELSE IF( mb1.LE.n ) THEN
225 info = -3
226 ELSE IF( nb1.LT.1 ) THEN
227 info = -4
228 ELSE IF( nb2.LT.1 ) THEN
229 info = -5
230 ELSE IF( lda.LT.max( 1, m ) ) THEN
231 info = -7
232 ELSE IF( ldt.LT.max( 1, min( nb2, n ) ) ) THEN
233 info = -9
234 ELSE
235*
236* Test the input LWORK for the dimension of the array WORK.
237* This workspace is used to store array:
238* a) Matrix T and WORK for SLATSQR;
239* b) N-by-N upper-triangular factor R_tsqr;
240* c) Matrix T and array WORK for SORGTSQR_ROW;
241* d) Diagonal D for SORHR_COL.
242*
243 IF( lwork.LT.n*n+1 .AND. .NOT.lquery ) THEN
244 info = -11
245 ELSE
246*
247* Set block size for column blocks
248*
249 nb1local = min( nb1, n )
250*
251 num_all_row_blocks = max( 1,
252 $ ceiling( real( m - n ) / real( mb1 - n ) ) )
253*
254* Length and leading dimension of WORK array to place
255* T array in TSQR.
256*
257 lwt = num_all_row_blocks * n * nb1local
258
259 ldwt = nb1local
260*
261* Length of TSQR work array
262*
263 lw1 = nb1local * n
264*
265* Length of SORGTSQR_ROW work array.
266*
267 lw2 = nb1local * max( nb1local, ( n - nb1local ) )
268*
269 lworkopt = max( lwt + lw1, max( lwt+n*n+lw2, lwt+n*n+n ) )
270*
271 IF( ( lwork.LT.max( 1, lworkopt ) ).AND.(.NOT.lquery) ) THEN
272 info = -11
273 END IF
274*
275 END IF
276 END IF
277*
278* Handle error in the input parameters and return workspace query.
279*
280 IF( info.NE.0 ) THEN
281 CALL xerbla( 'SGETSQRHRT', -info )
282 RETURN
283 ELSE IF ( lquery ) THEN
284 work( 1 ) = sroundup_lwork( lworkopt )
285 RETURN
286 END IF
287*
288* Quick return if possible
289*
290 IF( min( m, n ).EQ.0 ) THEN
291 work( 1 ) = sroundup_lwork( lworkopt )
292 RETURN
293 END IF
294*
295 nb2local = min( nb2, n )
296*
297*
298* (1) Perform TSQR-factorization of the M-by-N matrix A.
299*
300 CALL slatsqr( m, n, mb1, nb1local, a, lda, work, ldwt,
301 $ work(lwt+1), lw1, iinfo )
302*
303* (2) Copy the factor R_tsqr stored in the upper-triangular part
304* of A into the square matrix in the work array
305* WORK(LWT+1:LWT+N*N) column-by-column.
306*
307 DO j = 1, n
308 CALL scopy( j, a( 1, j ), 1, work( lwt + n*(j-1)+1 ), 1 )
309 END DO
310*
311* (3) Generate a M-by-N matrix Q with orthonormal columns from
312* the result stored below the diagonal in the array A in place.
313*
314
315 CALL sorgtsqr_row( m, n, mb1, nb1local, a, lda, work, ldwt,
316 $ work( lwt+n*n+1 ), lw2, iinfo )
317*
318* (4) Perform the reconstruction of Householder vectors from
319* the matrix Q (stored in A) in place.
320*
321 CALL sorhr_col( m, n, nb2local, a, lda, t, ldt,
322 $ work( lwt+n*n+1 ), iinfo )
323*
324* (5) Copy the factor R_tsqr stored in the square matrix in the
325* work array WORK(LWT+1:LWT+N*N) into the upper-triangular
326* part of A.
327*
328* (6) Compute from R_tsqr the factor R_hr corresponding to
329* the reconstructed Householder vectors, i.e. R_hr = S * R_tsqr.
330* This multiplication by the sign matrix S on the left means
331* changing the sign of I-th row of the matrix R_tsqr according
332* to sign of the I-th diagonal element DIAG(I) of the matrix S.
333* DIAG is stored in WORK( LWT+N*N+1 ) from the SORHR_COL output.
334*
335* (5) and (6) can be combined in a single loop, so the rows in A
336* are accessed only once.
337*
338 DO i = 1, n
339 IF( work( lwt+n*n+i ).EQ.-one ) THEN
340 DO j = i, n
341 a( i, j ) = -one * work( lwt+n*(j-1)+i )
342 END DO
343 ELSE
344 CALL scopy( n-i+1, work(lwt+n*(i-1)+i), n, a( i, i ), lda )
345 END IF
346 END DO
347*
348 work( 1 ) = sroundup_lwork( lworkopt )
349 RETURN
350*
351* End of SGETSQRHRT
352*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine slatsqr(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
SLATSQR
Definition slatsqr.f:169
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sorgtsqr_row(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
SORGTSQR_ROW
subroutine sorhr_col(m, n, nb, a, lda, t, ldt, d, info)
SORHR_COL
Definition sorhr_col.f:259
Here is the call graph for this function:
Here is the caller graph for this function: