LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sorgtsqr_row.f
Go to the documentation of this file.
1*> \brief \b SORGTSQR_ROW
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SORGTSQR_ROW + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgtsqr_row.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgtsqr_row.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgtsqr_row.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SORGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK,
22* $ LWORK, INFO )
23* IMPLICIT NONE
24*
25* .. Scalar Arguments ..
26* INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
27* ..
28* .. Array Arguments ..
29* REAL A( LDA, * ), T( LDT, * ), WORK( * )
30* ..
31*
32*> \par Purpose:
33* =============
34*>
35*> \verbatim
36*>
37*> SORGTSQR_ROW generates an M-by-N real matrix Q_out with
38*> orthonormal columns from the output of SLATSQR. These N orthonormal
39*> columns are the first N columns of a product of complex unitary
40*> matrices Q(k)_in of order M, which are returned by SLATSQR in
41*> a special format.
42*>
43*> Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).
44*>
45*> The input matrices Q(k)_in are stored in row and column blocks in A.
46*> See the documentation of SLATSQR for more details on the format of
47*> Q(k)_in, where each Q(k)_in is represented by block Householder
48*> transformations. This routine calls an auxiliary routine SLARFB_GETT,
49*> where the computation is performed on each individual block. The
50*> algorithm first sweeps NB-sized column blocks from the right to left
51*> starting in the bottom row block and continues to the top row block
52*> (hence _ROW in the routine name). This sweep is in reverse order of
53*> the order in which SLATSQR generates the output blocks.
54*> \endverbatim
55*
56* Arguments:
57* ==========
58*
59*> \param[in] M
60*> \verbatim
61*> M is INTEGER
62*> The number of rows of the matrix A. M >= 0.
63*> \endverbatim
64*>
65*> \param[in] N
66*> \verbatim
67*> N is INTEGER
68*> The number of columns of the matrix A. M >= N >= 0.
69*> \endverbatim
70*>
71*> \param[in] MB
72*> \verbatim
73*> MB is INTEGER
74*> The row block size used by SLATSQR to return
75*> arrays A and T. MB > N.
76*> (Note that if MB > M, then M is used instead of MB
77*> as the row block size).
78*> \endverbatim
79*>
80*> \param[in] NB
81*> \verbatim
82*> NB is INTEGER
83*> The column block size used by SLATSQR to return
84*> arrays A and T. NB >= 1.
85*> (Note that if NB > N, then N is used instead of NB
86*> as the column block size).
87*> \endverbatim
88*>
89*> \param[in,out] A
90*> \verbatim
91*> A is REAL array, dimension (LDA,N)
92*>
93*> On entry:
94*>
95*> The elements on and above the diagonal are not used as
96*> input. The elements below the diagonal represent the unit
97*> lower-trapezoidal blocked matrix V computed by SLATSQR
98*> that defines the input matrices Q_in(k) (ones on the
99*> diagonal are not stored). See SLATSQR for more details.
100*>
101*> On exit:
102*>
103*> The array A contains an M-by-N orthonormal matrix Q_out,
104*> i.e the columns of A are orthogonal unit vectors.
105*> \endverbatim
106*>
107*> \param[in] LDA
108*> \verbatim
109*> LDA is INTEGER
110*> The leading dimension of the array A. LDA >= max(1,M).
111*> \endverbatim
112*>
113*> \param[in] T
114*> \verbatim
115*> T is REAL array,
116*> dimension (LDT, N * NIRB)
117*> where NIRB = Number_of_input_row_blocks
118*> = MAX( 1, CEIL((M-N)/(MB-N)) )
119*> Let NICB = Number_of_input_col_blocks
120*> = CEIL(N/NB)
121*>
122*> The upper-triangular block reflectors used to define the
123*> input matrices Q_in(k), k=(1:NIRB*NICB). The block
124*> reflectors are stored in compact form in NIRB block
125*> reflector sequences. Each of the NIRB block reflector
126*> sequences is stored in a larger NB-by-N column block of T
127*> and consists of NICB smaller NB-by-NB upper-triangular
128*> column blocks. See SLATSQR for more details on the format
129*> of T.
130*> \endverbatim
131*>
132*> \param[in] LDT
133*> \verbatim
134*> LDT is INTEGER
135*> The leading dimension of the array T.
136*> LDT >= max(1,min(NB,N)).
137*> \endverbatim
138*>
139*> \param[out] WORK
140*> \verbatim
141*> (workspace) REAL array, dimension (MAX(1,LWORK))
142*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
143*> \endverbatim
144*>
145*> \param[in] LWORK
146*> \verbatim
147*> The dimension of the array WORK.
148*> LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
149*> where NBLOCAL=MIN(NB,N).
150*> If LWORK = -1, then a workspace query is assumed.
151*> The routine only calculates the optimal size of the WORK
152*> array, returns this value as the first entry of the WORK
153*> array, and no error message related to LWORK is issued
154*> by XERBLA.
155*> \endverbatim
156*>
157*> \param[out] INFO
158*> \verbatim
159*> INFO is INTEGER
160*> = 0: successful exit
161*> < 0: if INFO = -i, the i-th argument had an illegal value
162*> \endverbatim
163*>
164* Authors:
165* ========
166*
167*> \author Univ. of Tennessee
168*> \author Univ. of California Berkeley
169*> \author Univ. of Colorado Denver
170*> \author NAG Ltd.
171*
172*> \ingroup ungtsqr_row
173*
174*> \par Contributors:
175* ==================
176*>
177*> \verbatim
178*>
179*> November 2020, Igor Kozachenko,
180*> Computer Science Division,
181*> University of California, Berkeley
182*>
183*> \endverbatim
184*>
185* =====================================================================
186 SUBROUTINE sorgtsqr_row( M, N, MB, NB, A, LDA, T, LDT, WORK,
187 $ LWORK, INFO )
188 IMPLICIT NONE
189*
190* -- LAPACK computational routine --
191* -- LAPACK is a software package provided by Univ. of Tennessee, --
192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
193*
194* .. Scalar Arguments ..
195 INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
196* ..
197* .. Array Arguments ..
198 REAL A( LDA, * ), T( LDT, * ), WORK( * )
199* ..
200*
201* =====================================================================
202*
203* .. Parameters ..
204 REAL ONE, ZERO
205 parameter( one = 1.0e+0, zero = 0.0e+0 )
206* ..
207* .. Local Scalars ..
208 LOGICAL LQUERY
209 INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
210 $ lworkopt, num_all_row_blocks, jb_t, ib, imb,
211 $ kb, kb_last, knb, mb1
212* ..
213* .. Local Arrays ..
214 REAL DUMMY( 1, 1 )
215* ..
216* .. External Functions ..
217 REAL SROUNDUP_LWORK
218 EXTERNAL sroundup_lwork
219* ..
220* .. External Subroutines ..
221 EXTERNAL slarfb_gett, slaset, xerbla
222* ..
223* .. Intrinsic Functions ..
224 INTRINSIC max, min
225* ..
226* .. Executable Statements ..
227*
228* Test the input parameters
229*
230 info = 0
231 lquery = lwork.EQ.-1
232 IF( m.LT.0 ) THEN
233 info = -1
234 ELSE IF( n.LT.0 .OR. m.LT.n ) THEN
235 info = -2
236 ELSE IF( mb.LE.n ) THEN
237 info = -3
238 ELSE IF( nb.LT.1 ) THEN
239 info = -4
240 ELSE IF( lda.LT.max( 1, m ) ) THEN
241 info = -6
242 ELSE IF( ldt.LT.max( 1, min( nb, n ) ) ) THEN
243 info = -8
244 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
245 info = -10
246 END IF
247*
248 nblocal = min( nb, n )
249*
250* Determine the workspace size.
251*
252 IF( info.EQ.0 ) THEN
253 lworkopt = nblocal * max( nblocal, ( n - nblocal ) )
254 END IF
255*
256* Handle error in the input parameters and handle the workspace query.
257*
258 IF( info.NE.0 ) THEN
259 CALL xerbla( 'SORGTSQR_ROW', -info )
260 RETURN
261 ELSE IF ( lquery ) THEN
262 work( 1 ) = sroundup_lwork( lworkopt )
263 RETURN
264 END IF
265*
266* Quick return if possible
267*
268 IF( min( m, n ).EQ.0 ) THEN
269 work( 1 ) = sroundup_lwork( lworkopt )
270 RETURN
271 END IF
272*
273* (0) Set the upper-triangular part of the matrix A to zero and
274* its diagonal elements to one.
275*
276 CALL slaset('U', m, n, zero, one, a, lda )
277*
278* KB_LAST is the column index of the last column block reflector
279* in the matrices T and V.
280*
281 kb_last = ( ( n-1 ) / nblocal ) * nblocal + 1
282*
283*
284* (1) Bottom-up loop over row blocks of A, except the top row block.
285* NOTE: If MB>=M, then the loop is never executed.
286*
287 IF ( mb.LT.m ) THEN
288*
289* MB2 is the row blocking size for the row blocks before the
290* first top row block in the matrix A. IB is the row index for
291* the row blocks in the matrix A before the first top row block.
292* IB_BOTTOM is the row index for the last bottom row block
293* in the matrix A. JB_T is the column index of the corresponding
294* column block in the matrix T.
295*
296* Initialize variables.
297*
298* NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
299* including the first row block.
300*
301 mb2 = mb - n
302 m_plus_one = m + 1
303 itmp = ( m - mb - 1 ) / mb2
304 ib_bottom = itmp * mb2 + mb + 1
305 num_all_row_blocks = itmp + 2
306 jb_t = num_all_row_blocks * n + 1
307*
308 DO ib = ib_bottom, mb+1, -mb2
309*
310* Determine the block size IMB for the current row block
311* in the matrix A.
312*
313 imb = min( m_plus_one - ib, mb2 )
314*
315* Determine the column index JB_T for the current column block
316* in the matrix T.
317*
318 jb_t = jb_t - n
319*
320* Apply column blocks of H in the row block from right to left.
321*
322* KB is the column index of the current column block reflector
323* in the matrices T and V.
324*
325 DO kb = kb_last, 1, -nblocal
326*
327* Determine the size of the current column block KNB in
328* the matrices T and V.
329*
330 knb = min( nblocal, n - kb + 1 )
331*
332 CALL slarfb_gett( 'I', imb, n-kb+1, knb,
333 $ t( 1, jb_t+kb-1 ), ldt, a( kb, kb ), lda,
334 $ a( ib, kb ), lda, work, knb )
335*
336 END DO
337*
338 END DO
339*
340 END IF
341*
342* (2) Top row block of A.
343* NOTE: If MB>=M, then we have only one row block of A of size M
344* and we work on the entire matrix A.
345*
346 mb1 = min( mb, m )
347*
348* Apply column blocks of H in the top row block from right to left.
349*
350* KB is the column index of the current block reflector in
351* the matrices T and V.
352*
353 DO kb = kb_last, 1, -nblocal
354*
355* Determine the size of the current column block KNB in
356* the matrices T and V.
357*
358 knb = min( nblocal, n - kb + 1 )
359*
360 IF( mb1-kb-knb+1.EQ.0 ) THEN
361*
362* In SLARFB_GETT parameters, when M=0, then the matrix B
363* does not exist, hence we need to pass a dummy array
364* reference DUMMY(1,1) to B with LDDUMMY=1.
365*
366 CALL slarfb_gett( 'N', 0, n-kb+1, knb,
367 $ t( 1, kb ), ldt, a( kb, kb ), lda,
368 $ dummy( 1, 1 ), 1, work, knb )
369 ELSE
370 CALL slarfb_gett( 'N', mb1-kb-knb+1, n-kb+1, knb,
371 $ t( 1, kb ), ldt, a( kb, kb ), lda,
372 $ a( kb+knb, kb), lda, work, knb )
373
374 END IF
375*
376 END DO
377*
378 work( 1 ) = sroundup_lwork( lworkopt )
379 RETURN
380*
381* End of SORGTSQR_ROW
382*
383 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine slarfb_gett(ident, m, n, k, t, ldt, a, lda, b, ldb, work, ldwork)
SLARFB_GETT
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:110
subroutine sorgtsqr_row(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
SORGTSQR_ROW