LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sorgtsqr_row()

subroutine sorgtsqr_row ( integer  m,
integer  n,
integer  mb,
integer  nb,
real, dimension( lda, * )  a,
integer  lda,
real, dimension( ldt, * )  t,
integer  ldt,
real, dimension( * )  work,
integer  lwork,
integer  info 
)

SORGTSQR_ROW

Download SORGTSQR_ROW + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SORGTSQR_ROW generates an M-by-N real matrix Q_out with
 orthonormal columns from the output of SLATSQR. These N orthonormal
 columns are the first N columns of a product of complex unitary
 matrices Q(k)_in of order M, which are returned by SLATSQR in
 a special format.

      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ).

 The input matrices Q(k)_in are stored in row and column blocks in A.
 See the documentation of SLATSQR for more details on the format of
 Q(k)_in, where each Q(k)_in is represented by block Householder
 transformations. This routine calls an auxiliary routine SLARFB_GETT,
 where the computation is performed on each individual block. The
 algorithm first sweeps NB-sized column blocks from the right to left
 starting in the bottom row block and continues to the top row block
 (hence _ROW in the routine name). This sweep is in reverse order of
 the order in which SLATSQR generates the output blocks.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A. M >= N >= 0.
[in]MB
          MB is INTEGER
          The row block size used by SLATSQR to return
          arrays A and T. MB > N.
          (Note that if MB > M, then M is used instead of MB
          as the row block size).
[in]NB
          NB is INTEGER
          The column block size used by SLATSQR to return
          arrays A and T. NB >= 1.
          (Note that if NB > N, then N is used instead of NB
          as the column block size).
[in,out]A
          A is REAL array, dimension (LDA,N)

          On entry:

             The elements on and above the diagonal are not used as
             input. The elements below the diagonal represent the unit
             lower-trapezoidal blocked matrix V computed by SLATSQR
             that defines the input matrices Q_in(k) (ones on the
             diagonal are not stored). See SLATSQR for more details.

          On exit:

             The array A contains an M-by-N orthonormal matrix Q_out,
             i.e the columns of A are orthogonal unit vectors.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[in]T
          T is REAL array,
          dimension (LDT, N * NIRB)
          where NIRB = Number_of_input_row_blocks
                     = MAX( 1, CEIL((M-N)/(MB-N)) )
          Let NICB = Number_of_input_col_blocks
                   = CEIL(N/NB)

          The upper-triangular block reflectors used to define the
          input matrices Q_in(k), k=(1:NIRB*NICB). The block
          reflectors are stored in compact form in NIRB block
          reflector sequences. Each of the NIRB block reflector
          sequences is stored in a larger NB-by-N column block of T
          and consists of NICB smaller NB-by-NB upper-triangular
          column blocks. See SLATSQR for more details on the format
          of T.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.
          LDT >= max(1,min(NB,N)).
[out]WORK
          (workspace) REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          The dimension of the array WORK.
          LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)),
          where NBLOCAL=MIN(NB,N).
          If LWORK = -1, then a workspace query is assumed.
          The routine only calculates the optimal size of the WORK
          array, returns this value as the first entry of the WORK
          array, and no error message related to LWORK is issued
          by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
 November 2020, Igor Kozachenko,
                Computer Science Division,
                University of California, Berkeley

Definition at line 186 of file sorgtsqr_row.f.

188 IMPLICIT NONE
189*
190* -- LAPACK computational routine --
191* -- LAPACK is a software package provided by Univ. of Tennessee, --
192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
193*
194* .. Scalar Arguments ..
195 INTEGER INFO, LDA, LDT, LWORK, M, N, MB, NB
196* ..
197* .. Array Arguments ..
198 REAL A( LDA, * ), T( LDT, * ), WORK( * )
199* ..
200*
201* =====================================================================
202*
203* .. Parameters ..
204 REAL ONE, ZERO
205 parameter( one = 1.0e+0, zero = 0.0e+0 )
206* ..
207* .. Local Scalars ..
208 LOGICAL LQUERY
209 INTEGER NBLOCAL, MB2, M_PLUS_ONE, ITMP, IB_BOTTOM,
210 $ LWORKOPT, NUM_ALL_ROW_BLOCKS, JB_T, IB, IMB,
211 $ KB, KB_LAST, KNB, MB1
212* ..
213* .. Local Arrays ..
214 REAL DUMMY( 1, 1 )
215* ..
216* .. External Functions ..
217 REAL SROUNDUP_LWORK
218 EXTERNAL sroundup_lwork
219* ..
220* .. External Subroutines ..
221 EXTERNAL slarfb_gett, slaset, xerbla
222* ..
223* .. Intrinsic Functions ..
224 INTRINSIC max, min
225* ..
226* .. Executable Statements ..
227*
228* Test the input parameters
229*
230 info = 0
231 lquery = lwork.EQ.-1
232 IF( m.LT.0 ) THEN
233 info = -1
234 ELSE IF( n.LT.0 .OR. m.LT.n ) THEN
235 info = -2
236 ELSE IF( mb.LE.n ) THEN
237 info = -3
238 ELSE IF( nb.LT.1 ) THEN
239 info = -4
240 ELSE IF( lda.LT.max( 1, m ) ) THEN
241 info = -6
242 ELSE IF( ldt.LT.max( 1, min( nb, n ) ) ) THEN
243 info = -8
244 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
245 info = -10
246 END IF
247*
248 nblocal = min( nb, n )
249*
250* Determine the workspace size.
251*
252 IF( info.EQ.0 ) THEN
253 lworkopt = nblocal * max( nblocal, ( n - nblocal ) )
254 END IF
255*
256* Handle error in the input parameters and handle the workspace query.
257*
258 IF( info.NE.0 ) THEN
259 CALL xerbla( 'SORGTSQR_ROW', -info )
260 RETURN
261 ELSE IF ( lquery ) THEN
262 work( 1 ) = sroundup_lwork( lworkopt )
263 RETURN
264 END IF
265*
266* Quick return if possible
267*
268 IF( min( m, n ).EQ.0 ) THEN
269 work( 1 ) = sroundup_lwork( lworkopt )
270 RETURN
271 END IF
272*
273* (0) Set the upper-triangular part of the matrix A to zero and
274* its diagonal elements to one.
275*
276 CALL slaset('U', m, n, zero, one, a, lda )
277*
278* KB_LAST is the column index of the last column block reflector
279* in the matrices T and V.
280*
281 kb_last = ( ( n-1 ) / nblocal ) * nblocal + 1
282*
283*
284* (1) Bottom-up loop over row blocks of A, except the top row block.
285* NOTE: If MB>=M, then the loop is never executed.
286*
287 IF ( mb.LT.m ) THEN
288*
289* MB2 is the row blocking size for the row blocks before the
290* first top row block in the matrix A. IB is the row index for
291* the row blocks in the matrix A before the first top row block.
292* IB_BOTTOM is the row index for the last bottom row block
293* in the matrix A. JB_T is the column index of the corresponding
294* column block in the matrix T.
295*
296* Initialize variables.
297*
298* NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A
299* including the first row block.
300*
301 mb2 = mb - n
302 m_plus_one = m + 1
303 itmp = ( m - mb - 1 ) / mb2
304 ib_bottom = itmp * mb2 + mb + 1
305 num_all_row_blocks = itmp + 2
306 jb_t = num_all_row_blocks * n + 1
307*
308 DO ib = ib_bottom, mb+1, -mb2
309*
310* Determine the block size IMB for the current row block
311* in the matrix A.
312*
313 imb = min( m_plus_one - ib, mb2 )
314*
315* Determine the column index JB_T for the current column block
316* in the matrix T.
317*
318 jb_t = jb_t - n
319*
320* Apply column blocks of H in the row block from right to left.
321*
322* KB is the column index of the current column block reflector
323* in the matrices T and V.
324*
325 DO kb = kb_last, 1, -nblocal
326*
327* Determine the size of the current column block KNB in
328* the matrices T and V.
329*
330 knb = min( nblocal, n - kb + 1 )
331*
332 CALL slarfb_gett( 'I', imb, n-kb+1, knb,
333 $ t( 1, jb_t+kb-1 ), ldt, a( kb, kb ), lda,
334 $ a( ib, kb ), lda, work, knb )
335*
336 END DO
337*
338 END DO
339*
340 END IF
341*
342* (2) Top row block of A.
343* NOTE: If MB>=M, then we have only one row block of A of size M
344* and we work on the entire matrix A.
345*
346 mb1 = min( mb, m )
347*
348* Apply column blocks of H in the top row block from right to left.
349*
350* KB is the column index of the current block reflector in
351* the matrices T and V.
352*
353 DO kb = kb_last, 1, -nblocal
354*
355* Determine the size of the current column block KNB in
356* the matrices T and V.
357*
358 knb = min( nblocal, n - kb + 1 )
359*
360 IF( mb1-kb-knb+1.EQ.0 ) THEN
361*
362* In SLARFB_GETT parameters, when M=0, then the matrix B
363* does not exist, hence we need to pass a dummy array
364* reference DUMMY(1,1) to B with LDDUMMY=1.
365*
366 CALL slarfb_gett( 'N', 0, n-kb+1, knb,
367 $ t( 1, kb ), ldt, a( kb, kb ), lda,
368 $ dummy( 1, 1 ), 1, work, knb )
369 ELSE
370 CALL slarfb_gett( 'N', mb1-kb-knb+1, n-kb+1, knb,
371 $ t( 1, kb ), ldt, a( kb, kb ), lda,
372 $ a( kb+knb, kb), lda, work, knb )
373
374 END IF
375*
376 END DO
377*
378 work( 1 ) = sroundup_lwork( lworkopt )
379 RETURN
380*
381* End of SORGTSQR_ROW
382*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine slarfb_gett(ident, m, n, k, t, ldt, a, lda, b, ldb, work, ldwork)
SLARFB_GETT
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:110
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: