LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zggsvp3.f
Go to the documentation of this file.
1*> \brief \b ZGGSVP3
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGGSVP3 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp3.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp3.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp3.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
22* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
23* IWORK, RWORK, TAU, WORK, LWORK, INFO )
24*
25* .. Scalar Arguments ..
26* CHARACTER JOBQ, JOBU, JOBV
27* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
28* DOUBLE PRECISION TOLA, TOLB
29* ..
30* .. Array Arguments ..
31* INTEGER IWORK( * )
32* DOUBLE PRECISION RWORK( * )
33* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
34* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
35* ..
36*
37*
38*> \par Purpose:
39* =============
40*>
41*> \verbatim
42*>
43*> ZGGSVP3 computes unitary matrices U, V and Q such that
44*>
45*> N-K-L K L
46*> U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
47*> L ( 0 0 A23 )
48*> M-K-L ( 0 0 0 )
49*>
50*> N-K-L K L
51*> = K ( 0 A12 A13 ) if M-K-L < 0;
52*> M-K ( 0 0 A23 )
53*>
54*> N-K-L K L
55*> V**H*B*Q = L ( 0 0 B13 )
56*> P-L ( 0 0 0 )
57*>
58*> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
59*> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
60*> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
61*> numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.
62*>
63*> This decomposition is the preprocessing step for computing the
64*> Generalized Singular Value Decomposition (GSVD), see subroutine
65*> ZGGSVD3.
66*> \endverbatim
67*
68* Arguments:
69* ==========
70*
71*> \param[in] JOBU
72*> \verbatim
73*> JOBU is CHARACTER*1
74*> = 'U': Unitary matrix U is computed;
75*> = 'N': U is not computed.
76*> \endverbatim
77*>
78*> \param[in] JOBV
79*> \verbatim
80*> JOBV is CHARACTER*1
81*> = 'V': Unitary matrix V is computed;
82*> = 'N': V is not computed.
83*> \endverbatim
84*>
85*> \param[in] JOBQ
86*> \verbatim
87*> JOBQ is CHARACTER*1
88*> = 'Q': Unitary matrix Q is computed;
89*> = 'N': Q is not computed.
90*> \endverbatim
91*>
92*> \param[in] M
93*> \verbatim
94*> M is INTEGER
95*> The number of rows of the matrix A. M >= 0.
96*> \endverbatim
97*>
98*> \param[in] P
99*> \verbatim
100*> P is INTEGER
101*> The number of rows of the matrix B. P >= 0.
102*> \endverbatim
103*>
104*> \param[in] N
105*> \verbatim
106*> N is INTEGER
107*> The number of columns of the matrices A and B. N >= 0.
108*> \endverbatim
109*>
110*> \param[in,out] A
111*> \verbatim
112*> A is COMPLEX*16 array, dimension (LDA,N)
113*> On entry, the M-by-N matrix A.
114*> On exit, A contains the triangular (or trapezoidal) matrix
115*> described in the Purpose section.
116*> \endverbatim
117*>
118*> \param[in] LDA
119*> \verbatim
120*> LDA is INTEGER
121*> The leading dimension of the array A. LDA >= max(1,M).
122*> \endverbatim
123*>
124*> \param[in,out] B
125*> \verbatim
126*> B is COMPLEX*16 array, dimension (LDB,N)
127*> On entry, the P-by-N matrix B.
128*> On exit, B contains the triangular matrix described in
129*> the Purpose section.
130*> \endverbatim
131*>
132*> \param[in] LDB
133*> \verbatim
134*> LDB is INTEGER
135*> The leading dimension of the array B. LDB >= max(1,P).
136*> \endverbatim
137*>
138*> \param[in] TOLA
139*> \verbatim
140*> TOLA is DOUBLE PRECISION
141*> \endverbatim
142*>
143*> \param[in] TOLB
144*> \verbatim
145*> TOLB is DOUBLE PRECISION
146*>
147*> TOLA and TOLB are the thresholds to determine the effective
148*> numerical rank of matrix B and a subblock of A. Generally,
149*> they are set to
150*> TOLA = MAX(M,N)*norm(A)*MAZHEPS,
151*> TOLB = MAX(P,N)*norm(B)*MAZHEPS.
152*> The size of TOLA and TOLB may affect the size of backward
153*> errors of the decomposition.
154*> \endverbatim
155*>
156*> \param[out] K
157*> \verbatim
158*> K is INTEGER
159*> \endverbatim
160*>
161*> \param[out] L
162*> \verbatim
163*> L is INTEGER
164*>
165*> On exit, K and L specify the dimension of the subblocks
166*> described in Purpose section.
167*> K + L = effective numerical rank of (A**H,B**H)**H.
168*> \endverbatim
169*>
170*> \param[out] U
171*> \verbatim
172*> U is COMPLEX*16 array, dimension (LDU,M)
173*> If JOBU = 'U', U contains the unitary matrix U.
174*> If JOBU = 'N', U is not referenced.
175*> \endverbatim
176*>
177*> \param[in] LDU
178*> \verbatim
179*> LDU is INTEGER
180*> The leading dimension of the array U. LDU >= max(1,M) if
181*> JOBU = 'U'; LDU >= 1 otherwise.
182*> \endverbatim
183*>
184*> \param[out] V
185*> \verbatim
186*> V is COMPLEX*16 array, dimension (LDV,P)
187*> If JOBV = 'V', V contains the unitary matrix V.
188*> If JOBV = 'N', V is not referenced.
189*> \endverbatim
190*>
191*> \param[in] LDV
192*> \verbatim
193*> LDV is INTEGER
194*> The leading dimension of the array V. LDV >= max(1,P) if
195*> JOBV = 'V'; LDV >= 1 otherwise.
196*> \endverbatim
197*>
198*> \param[out] Q
199*> \verbatim
200*> Q is COMPLEX*16 array, dimension (LDQ,N)
201*> If JOBQ = 'Q', Q contains the unitary matrix Q.
202*> If JOBQ = 'N', Q is not referenced.
203*> \endverbatim
204*>
205*> \param[in] LDQ
206*> \verbatim
207*> LDQ is INTEGER
208*> The leading dimension of the array Q. LDQ >= max(1,N) if
209*> JOBQ = 'Q'; LDQ >= 1 otherwise.
210*> \endverbatim
211*>
212*> \param[out] IWORK
213*> \verbatim
214*> IWORK is INTEGER array, dimension (N)
215*> \endverbatim
216*>
217*> \param[out] RWORK
218*> \verbatim
219*> RWORK is DOUBLE PRECISION array, dimension (2*N)
220*> \endverbatim
221*>
222*> \param[out] TAU
223*> \verbatim
224*> TAU is COMPLEX*16 array, dimension (N)
225*> \endverbatim
226*>
227*> \param[out] WORK
228*> \verbatim
229*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
230*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
231*> \endverbatim
232*>
233*> \param[in] LWORK
234*> \verbatim
235*> LWORK is INTEGER
236*> The dimension of the array WORK.
237*>
238*> If LWORK = -1, then a workspace query is assumed; the routine
239*> only calculates the optimal size of the WORK array, returns
240*> this value as the first entry of the WORK array, and no error
241*> message related to LWORK is issued by XERBLA.
242*> \endverbatim
243*>
244*> \param[out] INFO
245*> \verbatim
246*> INFO is INTEGER
247*> = 0: successful exit
248*> < 0: if INFO = -i, the i-th argument had an illegal value.
249*> \endverbatim
250*
251* Authors:
252* ========
253*
254*> \author Univ. of Tennessee
255*> \author Univ. of California Berkeley
256*> \author Univ. of Colorado Denver
257*> \author NAG Ltd.
258*
259*> \ingroup complex16OTHERcomputational
260*
261*> \par Further Details:
262* =====================
263*
264*> \verbatim
265*>
266*> The subroutine uses LAPACK subroutine ZGEQP3 for the QR factorization
267*> with column pivoting to detect the effective numerical rank of the
268*> a matrix. It may be replaced by a better rank determination strategy.
269*>
270*> ZGGSVP3 replaces the deprecated subroutine ZGGSVP.
271*>
272*> \endverbatim
273*>
274* =====================================================================
275 SUBROUTINE zggsvp3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
276 $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
277 $ IWORK, RWORK, TAU, WORK, LWORK, INFO )
278*
279* -- LAPACK computational routine --
280* -- LAPACK is a software package provided by Univ. of Tennessee, --
281* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
282*
283 IMPLICIT NONE
284*
285* .. Scalar Arguments ..
286 CHARACTER JOBQ, JOBU, JOBV
287 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
288 $ lwork
289 DOUBLE PRECISION TOLA, TOLB
290* ..
291* .. Array Arguments ..
292 INTEGER IWORK( * )
293 DOUBLE PRECISION RWORK( * )
294 COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
295 $ tau( * ), u( ldu, * ), v( ldv, * ), work( * )
296* ..
297*
298* =====================================================================
299*
300* .. Parameters ..
301 COMPLEX*16 CZERO, CONE
302 PARAMETER ( CZERO = ( 0.0d+0, 0.0d+0 ),
303 $ cone = ( 1.0d+0, 0.0d+0 ) )
304* ..
305* .. Local Scalars ..
306 LOGICAL FORWRD, WANTQ, WANTU, WANTV, LQUERY
307 INTEGER I, J, LWKOPT
308* ..
309* .. External Functions ..
310 LOGICAL LSAME
311 EXTERNAL LSAME
312* ..
313* .. External Subroutines ..
314 EXTERNAL xerbla, zgeqp3, zgeqr2, zgerq2, zlacpy, zlapmt,
316* ..
317* .. Intrinsic Functions ..
318 INTRINSIC abs, dble, dimag, max, min
319* ..
320* .. Executable Statements ..
321*
322* Test the input parameters
323*
324 wantu = lsame( jobu, 'U' )
325 wantv = lsame( jobv, 'V' )
326 wantq = lsame( jobq, 'Q' )
327 forwrd = .true.
328 lquery = ( lwork.EQ.-1 )
329 lwkopt = 1
330*
331* Test the input arguments
332*
333 info = 0
334 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
335 info = -1
336 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
337 info = -2
338 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
339 info = -3
340 ELSE IF( m.LT.0 ) THEN
341 info = -4
342 ELSE IF( p.LT.0 ) THEN
343 info = -5
344 ELSE IF( n.LT.0 ) THEN
345 info = -6
346 ELSE IF( lda.LT.max( 1, m ) ) THEN
347 info = -8
348 ELSE IF( ldb.LT.max( 1, p ) ) THEN
349 info = -10
350 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
351 info = -16
352 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
353 info = -18
354 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
355 info = -20
356 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
357 info = -24
358 END IF
359*
360* Compute workspace
361*
362 IF( info.EQ.0 ) THEN
363 CALL zgeqp3( p, n, b, ldb, iwork, tau, work, -1, rwork, info )
364 lwkopt = int( work( 1 ) )
365 IF( wantv ) THEN
366 lwkopt = max( lwkopt, p )
367 END IF
368 lwkopt = max( lwkopt, min( n, p ) )
369 lwkopt = max( lwkopt, m )
370 IF( wantq ) THEN
371 lwkopt = max( lwkopt, n )
372 END IF
373 CALL zgeqp3( m, n, a, lda, iwork, tau, work, -1, rwork, info )
374 lwkopt = max( lwkopt, int( work( 1 ) ) )
375 lwkopt = max( 1, lwkopt )
376 work( 1 ) = dcmplx( lwkopt )
377 END IF
378*
379 IF( info.NE.0 ) THEN
380 CALL xerbla( 'ZGGSVP3', -info )
381 RETURN
382 END IF
383 IF( lquery ) THEN
384 RETURN
385 ENDIF
386*
387* QR with column pivoting of B: B*P = V*( S11 S12 )
388* ( 0 0 )
389*
390 DO 10 i = 1, n
391 iwork( i ) = 0
392 10 CONTINUE
393 CALL zgeqp3( p, n, b, ldb, iwork, tau, work, lwork, rwork, info )
394*
395* Update A := A*P
396*
397 CALL zlapmt( forwrd, m, n, a, lda, iwork )
398*
399* Determine the effective rank of matrix B.
400*
401 l = 0
402 DO 20 i = 1, min( p, n )
403 IF( abs( b( i, i ) ).GT.tolb )
404 $ l = l + 1
405 20 CONTINUE
406*
407 IF( wantv ) THEN
408*
409* Copy the details of V, and form V.
410*
411 CALL zlaset( 'Full', p, p, czero, czero, v, ldv )
412 IF( p.GT.1 )
413 $ CALL zlacpy( 'Lower', p-1, n, b( 2, 1 ), ldb, v( 2, 1 ),
414 $ ldv )
415 CALL zung2r( p, p, min( p, n ), v, ldv, tau, work, info )
416 END IF
417*
418* Clean up B
419*
420 DO 40 j = 1, l - 1
421 DO 30 i = j + 1, l
422 b( i, j ) = czero
423 30 CONTINUE
424 40 CONTINUE
425 IF( p.GT.l )
426 $ CALL zlaset( 'Full', p-l, n, czero, czero, b( l+1, 1 ), ldb )
427*
428 IF( wantq ) THEN
429*
430* Set Q = I and Update Q := Q*P
431*
432 CALL zlaset( 'Full', n, n, czero, cone, q, ldq )
433 CALL zlapmt( forwrd, n, n, q, ldq, iwork )
434 END IF
435*
436 IF( p.GE.l .AND. n.NE.l ) THEN
437*
438* RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z
439*
440 CALL zgerq2( l, n, b, ldb, tau, work, info )
441*
442* Update A := A*Z**H
443*
444 CALL zunmr2( 'Right', 'Conjugate transpose', m, n, l, b, ldb,
445 $ tau, a, lda, work, info )
446 IF( wantq ) THEN
447*
448* Update Q := Q*Z**H
449*
450 CALL zunmr2( 'Right', 'Conjugate transpose', n, n, l, b,
451 $ ldb, tau, q, ldq, work, info )
452 END IF
453*
454* Clean up B
455*
456 CALL zlaset( 'Full', l, n-l, czero, czero, b, ldb )
457 DO 60 j = n - l + 1, n
458 DO 50 i = j - n + l + 1, l
459 b( i, j ) = czero
460 50 CONTINUE
461 60 CONTINUE
462*
463 END IF
464*
465* Let N-L L
466* A = ( A11 A12 ) M,
467*
468* then the following does the complete QR decomposition of A11:
469*
470* A11 = U*( 0 T12 )*P1**H
471* ( 0 0 )
472*
473 DO 70 i = 1, n - l
474 iwork( i ) = 0
475 70 CONTINUE
476 CALL zgeqp3( m, n-l, a, lda, iwork, tau, work, lwork, rwork,
477 $ info )
478*
479* Determine the effective rank of A11
480*
481 k = 0
482 DO 80 i = 1, min( m, n-l )
483 IF( abs( a( i, i ) ).GT.tola )
484 $ k = k + 1
485 80 CONTINUE
486*
487* Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N )
488*
489 CALL zunm2r( 'Left', 'Conjugate transpose', m, l, min( m, n-l ),
490 $ a, lda, tau, a( 1, n-l+1 ), lda, work, info )
491*
492 IF( wantu ) THEN
493*
494* Copy the details of U, and form U
495*
496 CALL zlaset( 'Full', m, m, czero, czero, u, ldu )
497 IF( m.GT.1 )
498 $ CALL zlacpy( 'Lower', m-1, n-l, a( 2, 1 ), lda, u( 2, 1 ),
499 $ ldu )
500 CALL zung2r( m, m, min( m, n-l ), u, ldu, tau, work, info )
501 END IF
502*
503 IF( wantq ) THEN
504*
505* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
506*
507 CALL zlapmt( forwrd, n, n-l, q, ldq, iwork )
508 END IF
509*
510* Clean up A: set the strictly lower triangular part of
511* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
512*
513 DO 100 j = 1, k - 1
514 DO 90 i = j + 1, k
515 a( i, j ) = czero
516 90 CONTINUE
517 100 CONTINUE
518 IF( m.GT.k )
519 $ CALL zlaset( 'Full', m-k, n-l, czero, czero, a( k+1, 1 ), lda )
520*
521 IF( n-l.GT.k ) THEN
522*
523* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
524*
525 CALL zgerq2( k, n-l, a, lda, tau, work, info )
526*
527 IF( wantq ) THEN
528*
529* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H
530*
531 CALL zunmr2( 'Right', 'Conjugate transpose', n, n-l, k, a,
532 $ lda, tau, q, ldq, work, info )
533 END IF
534*
535* Clean up A
536*
537 CALL zlaset( 'Full', k, n-l-k, czero, czero, a, lda )
538 DO 120 j = n - l - k + 1, n - l
539 DO 110 i = j - n + l + k + 1, k
540 a( i, j ) = czero
541 110 CONTINUE
542 120 CONTINUE
543*
544 END IF
545*
546 IF( m.GT.k ) THEN
547*
548* QR factorization of A( K+1:M,N-L+1:N )
549*
550 CALL zgeqr2( m-k, l, a( k+1, n-l+1 ), lda, tau, work, info )
551*
552 IF( wantu ) THEN
553*
554* Update U(:,K+1:M) := U(:,K+1:M)*U1
555*
556 CALL zunm2r( 'Right', 'No transpose', m, m-k, min( m-k, l ),
557 $ a( k+1, n-l+1 ), lda, tau, u( 1, k+1 ), ldu,
558 $ work, info )
559 END IF
560*
561* Clean up
562*
563 DO 140 j = n - l + 1, n
564 DO 130 i = j - n + k + l + 1, m
565 a( i, j ) = czero
566 130 CONTINUE
567 140 CONTINUE
568*
569 END IF
570*
571 work( 1 ) = dcmplx( lwkopt )
572 RETURN
573*
574* End of ZGGSVP3
575*
576 END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine zgeqp3(M, N, A, LDA, JPVT, TAU, WORK, LWORK, RWORK, INFO)
ZGEQP3
Definition: zgeqp3.f:159
subroutine zgeqr2(M, N, A, LDA, TAU, WORK, INFO)
ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition: zgeqr2.f:130
subroutine zgerq2(M, N, A, LDA, TAU, WORK, INFO)
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Definition: zgerq2.f:123
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlapmt(FORWRD, M, N, X, LDX, K)
ZLAPMT performs a forward or backward permutation of the columns of a matrix.
Definition: zlapmt.f:104
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine zung2r(M, N, K, A, LDA, TAU, WORK, INFO)
ZUNG2R
Definition: zung2r.f:114
subroutine zggsvp3(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU, WORK, LWORK, INFO)
ZGGSVP3
Definition: zggsvp3.f:278
subroutine zunmr2(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
ZUNMR2 multiplies a general matrix by the unitary matrix from a RQ factorization determined by cgerqf...
Definition: zunmr2.f:159
subroutine zunm2r(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
ZUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition: zunm2r.f:159