LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zung2r.f
Go to the documentation of this file.
1*> \brief \b ZUNG2R
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZUNG2R + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zung2r.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zung2r.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zung2r.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZUNG2R( M, N, K, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, K, LDA, M, N
23* ..
24* .. Array Arguments ..
25* COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> ZUNG2R generates an m by n complex matrix Q with orthonormal columns,
35*> which is defined as the first n columns of a product of k elementary
36*> reflectors of order m
37*>
38*> Q = H(1) H(2) . . . H(k)
39*>
40*> as returned by ZGEQRF.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix Q. M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix Q. M >= N >= 0.
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> The number of elementary reflectors whose product defines the
62*> matrix Q. N >= K >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*> A is COMPLEX*16 array, dimension (LDA,N)
68*> On entry, the i-th column must contain the vector which
69*> defines the elementary reflector H(i), for i = 1,2,...,k, as
70*> returned by ZGEQRF in the first k columns of its array
71*> argument A.
72*> On exit, the m by n matrix Q.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The first dimension of the array A. LDA >= max(1,M).
79*> \endverbatim
80*>
81*> \param[in] TAU
82*> \verbatim
83*> TAU is COMPLEX*16 array, dimension (K)
84*> TAU(i) must contain the scalar factor of the elementary
85*> reflector H(i), as returned by ZGEQRF.
86*> \endverbatim
87*>
88*> \param[out] WORK
89*> \verbatim
90*> WORK is COMPLEX*16 array, dimension (N)
91*> \endverbatim
92*>
93*> \param[out] INFO
94*> \verbatim
95*> INFO is INTEGER
96*> = 0: successful exit
97*> < 0: if INFO = -i, the i-th argument has an illegal value
98*> \endverbatim
99*
100* Authors:
101* ========
102*
103*> \author Univ. of Tennessee
104*> \author Univ. of California Berkeley
105*> \author Univ. of Colorado Denver
106*> \author NAG Ltd.
107*
108*> \ingroup ung2r
109*
110* =====================================================================
111 SUBROUTINE zung2r( M, N, K, A, LDA, TAU, WORK, INFO )
112*
113* -- LAPACK computational routine --
114* -- LAPACK is a software package provided by Univ. of Tennessee, --
115* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117* .. Scalar Arguments ..
118 INTEGER INFO, K, LDA, M, N
119* ..
120* .. Array Arguments ..
121 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 COMPLEX*16 ONE, ZERO
128 parameter( one = ( 1.0d+0, 0.0d+0 ),
129 $ zero = ( 0.0d+0, 0.0d+0 ) )
130* ..
131* .. Local Scalars ..
132 INTEGER I, J, L
133* ..
134* .. External Subroutines ..
135 EXTERNAL xerbla, zlarf1f, zscal
136* ..
137* .. Intrinsic Functions ..
138 INTRINSIC max
139* ..
140* .. Executable Statements ..
141*
142* Test the input arguments
143*
144 info = 0
145 IF( m.LT.0 ) THEN
146 info = -1
147 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
148 info = -2
149 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
150 info = -3
151 ELSE IF( lda.LT.max( 1, m ) ) THEN
152 info = -5
153 END IF
154 IF( info.NE.0 ) THEN
155 CALL xerbla( 'ZUNG2R', -info )
156 RETURN
157 END IF
158*
159* Quick return if possible
160*
161 IF( n.LE.0 )
162 $ RETURN
163*
164* Initialise columns k+1:n to columns of the unit matrix
165*
166 DO 20 j = k + 1, n
167 DO 10 l = 1, m
168 a( l, j ) = zero
169 10 CONTINUE
170 a( j, j ) = one
171 20 CONTINUE
172*
173 DO 40 i = k, 1, -1
174*
175* Apply H(i) to A(i:m,i:n) from the left
176*
177 IF( i.LT.n ) THEN
178 CALL zlarf1f( 'Left', m-i+1, n-i, a( i, i ), 1, tau( i ),
179 $ a( i, i+1 ), lda, work )
180 END IF
181 IF( i.LT.m )
182 $ CALL zscal( m-i, -tau( i ), a( i+1, i ), 1 )
183 a( i, i ) = one - tau( i )
184*
185* Set A(1:i-1,i) to zero
186*
187 DO 30 l = 1, i - 1
188 a( l, i ) = zero
189 30 CONTINUE
190 40 CONTINUE
191 RETURN
192*
193* End of ZUNG2R
194*
195 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlarf1f(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1F applies an elementary reflector to a general rectangular
Definition zlarf1f.f:157
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
subroutine zung2r(m, n, k, a, lda, tau, work, info)
ZUNG2R
Definition zung2r.f:112