LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ derrsy()

subroutine derrsy ( character*3 path,
integer nunit )

DERRSYX

Purpose:
!>
!> DERRSY tests the error exits for the DOUBLE PRECISION routines
!> for symmetric indefinite matrices.
!>
!> Note that this file is used only when the XBLAS are available,
!> otherwise derrsy.f defines this subroutine.
!> 
Parameters
[in]PATH
!>          PATH is CHARACTER*3
!>          The LAPACK path name for the routines to be tested.
!> 
[in]NUNIT
!>          NUNIT is INTEGER
!>          The unit number for output.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 57 of file derrsyx.f.

58*
59* -- LAPACK test routine --
60* -- LAPACK is a software package provided by Univ. of Tennessee, --
61* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62*
63* .. Scalar Arguments ..
64 CHARACTER*3 PATH
65 INTEGER NUNIT
66* ..
67*
68* =====================================================================
69*
70* .. Parameters ..
71 INTEGER NMAX
72 parameter( nmax = 4 )
73* ..
74* .. Local Scalars ..
75 CHARACTER EQ
76 CHARACTER*2 C2
77 INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS
78 DOUBLE PRECISION ANRM, RCOND, BERR
79* ..
80* .. Local Arrays ..
81 INTEGER IP( NMAX ), IW( NMAX )
82 DOUBLE PRECISION A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
83 $ E( NMAX ), R1( NMAX ), R2( NMAX ), W( 3*NMAX ),
84 $ X( NMAX ), S( NMAX ), ERR_BNDS_N( NMAX, 3 ),
85 $ ERR_BNDS_C( NMAX, 3 ), PARAMS( 1 )
86* ..
87* .. External Functions ..
88 LOGICAL LSAMEN
89 EXTERNAL lsamen
90* ..
91* .. External Subroutines ..
92 EXTERNAL alaesm, chkxer, dspcon, dsprfs, dsptrf, dsptri,
98* ..
99* .. Scalars in Common ..
100 LOGICAL LERR, OK
101 CHARACTER*32 SRNAMT
102 INTEGER INFOT, NOUT
103* ..
104* .. Common blocks ..
105 COMMON / infoc / infot, nout, ok, lerr
106 COMMON / srnamc / srnamt
107* ..
108* .. Intrinsic Functions ..
109 INTRINSIC dble
110* ..
111* .. Executable Statements ..
112*
113 nout = nunit
114 WRITE( nout, fmt = * )
115 c2 = path( 2: 3 )
116*
117* Set the variables to innocuous values.
118*
119 DO 20 j = 1, nmax
120 DO 10 i = 1, nmax
121 a( i, j ) = 1.d0 / dble( i+j )
122 af( i, j ) = 1.d0 / dble( i+j )
123 10 CONTINUE
124 b( j ) = 0.d0
125 e( j ) = 0.d0
126 r1( j ) = 0.d0
127 r2( j ) = 0.d0
128 w( j ) = 0.d0
129 x( j ) = 0.d0
130 s( j ) = 0.d0
131 ip( j ) = j
132 iw( j ) = j
133 20 CONTINUE
134 anrm = 1.0d0
135 rcond = 1.0d0
136 ok = .true.
137*
138 IF( lsamen( 2, c2, 'SY' ) ) THEN
139*
140* Test error exits of the routines that use factorization
141* of a symmetric indefinite matrix with partial
142* (Bunch-Kaufman) pivoting.
143*
144* DSYTRF
145*
146 srnamt = 'DSYTRF'
147 infot = 1
148 CALL dsytrf( '/', 0, a, 1, ip, w, 1, info )
149 CALL chkxer( 'DSYTRF', infot, nout, lerr, ok )
150 infot = 2
151 CALL dsytrf( 'U', -1, a, 1, ip, w, 1, info )
152 CALL chkxer( 'DSYTRF', infot, nout, lerr, ok )
153 infot = 4
154 CALL dsytrf( 'U', 2, a, 1, ip, w, 4, info )
155 CALL chkxer( 'DSYTRF', infot, nout, lerr, ok )
156 infot = 7
157 CALL dsytrf( 'U', 0, a, 1, ip, w, 0, info )
158 CALL chkxer( 'DSYTRF', infot, nout, lerr, ok )
159 infot = 7
160 CALL dsytrf( 'U', 0, a, 1, ip, w, -2, info )
161 CALL chkxer( 'DSYTRF', infot, nout, lerr, ok )
162*
163* DSYTF2
164*
165 srnamt = 'DSYTF2'
166 infot = 1
167 CALL dsytf2( '/', 0, a, 1, ip, info )
168 CALL chkxer( 'DSYTF2', infot, nout, lerr, ok )
169 infot = 2
170 CALL dsytf2( 'U', -1, a, 1, ip, info )
171 CALL chkxer( 'DSYTF2', infot, nout, lerr, ok )
172 infot = 4
173 CALL dsytf2( 'U', 2, a, 1, ip, info )
174 CALL chkxer( 'DSYTF2', infot, nout, lerr, ok )
175*
176* DSYTRI
177*
178 srnamt = 'DSYTRI'
179 infot = 1
180 CALL dsytri( '/', 0, a, 1, ip, w, info )
181 CALL chkxer( 'DSYTRI', infot, nout, lerr, ok )
182 infot = 2
183 CALL dsytri( 'U', -1, a, 1, ip, w, info )
184 CALL chkxer( 'DSYTRI', infot, nout, lerr, ok )
185 infot = 4
186 CALL dsytri( 'U', 2, a, 1, ip, w, info )
187 CALL chkxer( 'DSYTRI', infot, nout, lerr, ok )
188*
189* DSYTRI2
190*
191 srnamt = 'DSYTRI2'
192 infot = 1
193 CALL dsytri2( '/', 0, a, 1, ip, w, iw, info )
194 CALL chkxer( 'DSYTRI2', infot, nout, lerr, ok )
195 infot = 2
196 CALL dsytri2( 'U', -1, a, 1, ip, w, iw, info )
197 CALL chkxer( 'DSYTRI2', infot, nout, lerr, ok )
198 infot = 4
199 CALL dsytri2( 'U', 2, a, 1, ip, w, iw, info )
200 CALL chkxer( 'DSYTRI2', infot, nout, lerr, ok )
201*
202* DSYTRI2X
203*
204 srnamt = 'DSYTRI2X'
205 infot = 1
206 CALL dsytri2x( '/', 0, a, 1, ip, w, 1, info )
207 CALL chkxer( 'DSYTRI2X', infot, nout, lerr, ok )
208 infot = 2
209 CALL dsytri2x( 'U', -1, a, 1, ip, w, 1, info )
210 CALL chkxer( 'DSYTRI2X', infot, nout, lerr, ok )
211 infot = 4
212 CALL dsytri2x( 'U', 2, a, 1, ip, w, 1, info )
213 CALL chkxer( 'DSYTRI2X', infot, nout, lerr, ok )
214*
215* DSYTRS
216*
217 srnamt = 'DSYTRS'
218 infot = 1
219 CALL dsytrs( '/', 0, 0, a, 1, ip, b, 1, info )
220 CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
221 infot = 2
222 CALL dsytrs( 'U', -1, 0, a, 1, ip, b, 1, info )
223 CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
224 infot = 3
225 CALL dsytrs( 'U', 0, -1, a, 1, ip, b, 1, info )
226 CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
227 infot = 5
228 CALL dsytrs( 'U', 2, 1, a, 1, ip, b, 2, info )
229 CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
230 infot = 8
231 CALL dsytrs( 'U', 2, 1, a, 2, ip, b, 1, info )
232 CALL chkxer( 'DSYTRS', infot, nout, lerr, ok )
233*
234* DSYRFS
235*
236 srnamt = 'DSYRFS'
237 infot = 1
238 CALL dsyrfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
239 $ iw, info )
240 CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
241 infot = 2
242 CALL dsyrfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
243 $ w, iw, info )
244 CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
245 infot = 3
246 CALL dsyrfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
247 $ w, iw, info )
248 CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
249 infot = 5
250 CALL dsyrfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
251 $ iw, info )
252 CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
253 infot = 7
254 CALL dsyrfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
255 $ iw, info )
256 CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
257 infot = 10
258 CALL dsyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
259 $ iw, info )
260 CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
261 infot = 12
262 CALL dsyrfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
263 $ iw, info )
264 CALL chkxer( 'DSYRFS', infot, nout, lerr, ok )
265*
266* DSYRFSX
267*
268 n_err_bnds = 3
269 nparams = 0
270 srnamt = 'DSYRFSX'
271 infot = 1
272 CALL dsyrfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
273 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
274 $ params, w, iw, info )
275 CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
276 infot = 2
277 CALL dsyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
278 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
279 $ params, w, iw, info )
280 CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
281 eq = 'N'
282 infot = 3
283 CALL dsyrfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
284 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
285 $ params, w, iw, info )
286 CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
287 infot = 4
288 CALL dsyrfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
289 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
290 $ params, w, iw, info )
291 CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
292 infot = 6
293 CALL dsyrfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
294 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
295 $ params, w, iw, info )
296 CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
297 infot = 8
298 CALL dsyrfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
299 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
300 $ params, w, iw, info )
301 CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
302 infot = 12
303 CALL dsyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
304 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
305 $ params, w, iw, info )
306 CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
307 infot = 14
308 CALL dsyrfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
309 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
310 $ params, w, iw, info )
311 CALL chkxer( 'DSYRFSX', infot, nout, lerr, ok )
312*
313* DSYCON
314*
315 srnamt = 'DSYCON'
316 infot = 1
317 CALL dsycon( '/', 0, a, 1, ip, anrm, rcond, w, iw, info )
318 CALL chkxer( 'DSYCON', infot, nout, lerr, ok )
319 infot = 2
320 CALL dsycon( 'U', -1, a, 1, ip, anrm, rcond, w, iw, info )
321 CALL chkxer( 'DSYCON', infot, nout, lerr, ok )
322 infot = 4
323 CALL dsycon( 'U', 2, a, 1, ip, anrm, rcond, w, iw, info )
324 CALL chkxer( 'DSYCON', infot, nout, lerr, ok )
325 infot = 6
326 CALL dsycon( 'U', 1, a, 1, ip, -1.0d0, rcond, w, iw, info )
327 CALL chkxer( 'DSYCON', infot, nout, lerr, ok )
328*
329 ELSE IF( lsamen( 2, c2, 'SR' ) ) THEN
330*
331* Test error exits of the routines that use factorization
332* of a symmetric indefinite matrix with rook
333* (bounded Bunch-Kaufman) pivoting.
334*
335* DSYTRF_ROOK
336*
337 srnamt = 'DSYTRF_ROOK'
338 infot = 1
339 CALL dsytrf_rook( '/', 0, a, 1, ip, w, 1, info )
340 CALL chkxer( 'DSYTRF_ROOK', infot, nout, lerr, ok )
341 infot = 2
342 CALL dsytrf_rook( 'U', -1, a, 1, ip, w, 1, info )
343 CALL chkxer( 'DSYTRF_ROOK', infot, nout, lerr, ok )
344 infot = 4
345 CALL dsytrf_rook( 'U', 2, a, 1, ip, w, 4, info )
346 CALL chkxer( 'DSYTRF_ROOK', infot, nout, lerr, ok )
347 infot = 7
348 CALL dsytrf_rook( 'U', 0, a, 1, ip, w, 0, info )
349 CALL chkxer( 'DSYTRF_ROOK', infot, nout, lerr, ok )
350 infot = 7
351 CALL dsytrf_rook( 'U', 0, a, 1, ip, w, -2, info )
352 CALL chkxer( 'DSYTRF_ROOK', infot, nout, lerr, ok )
353*
354* DSYTF2_ROOK
355*
356 srnamt = 'DSYTF2_ROOK'
357 infot = 1
358 CALL dsytf2_rook( '/', 0, a, 1, ip, info )
359 CALL chkxer( 'DSYTF2_ROOK', infot, nout, lerr, ok )
360 infot = 2
361 CALL dsytf2_rook( 'U', -1, a, 1, ip, info )
362 CALL chkxer( 'DSYTF2_ROOK', infot, nout, lerr, ok )
363 infot = 4
364 CALL dsytf2_rook( 'U', 2, a, 1, ip, info )
365 CALL chkxer( 'DSYTF2_ROOK', infot, nout, lerr, ok )
366*
367* DSYTRI_ROOK
368*
369 srnamt = 'DSYTRI_ROOK'
370 infot = 1
371 CALL dsytri_rook( '/', 0, a, 1, ip, w, info )
372 CALL chkxer( 'DSYTRI_ROOK', infot, nout, lerr, ok )
373 infot = 2
374 CALL dsytri_rook( 'U', -1, a, 1, ip, w, info )
375 CALL chkxer( 'DSYTRI_ROOK', infot, nout, lerr, ok )
376 infot = 4
377 CALL dsytri_rook( 'U', 2, a, 1, ip, w, info )
378 CALL chkxer( 'DSYTRI_ROOK', infot, nout, lerr, ok )
379*
380* DSYTRS_ROOK
381*
382 srnamt = 'DSYTRS_ROOK'
383 infot = 1
384 CALL dsytrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
385 CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
386 infot = 2
387 CALL dsytrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
388 CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
389 infot = 3
390 CALL dsytrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
391 CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
392 infot = 5
393 CALL dsytrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
394 CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
395 infot = 8
396 CALL dsytrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
397 CALL chkxer( 'DSYTRS_ROOK', infot, nout, lerr, ok )
398*
399* DSYCON_ROOK
400*
401 srnamt = 'DSYCON_ROOK'
402 infot = 1
403 CALL dsycon_rook( '/', 0, a, 1, ip, anrm, rcond, w, iw, info )
404 CALL chkxer( 'DSYCON_ROOK', infot, nout, lerr, ok )
405 infot = 2
406 CALL dsycon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, iw, info )
407 CALL chkxer( 'DSYCON_ROOK', infot, nout, lerr, ok )
408 infot = 4
409 CALL dsycon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, iw, info )
410 CALL chkxer( 'DSYCON_ROOK', infot, nout, lerr, ok )
411 infot = 6
412 CALL dsycon_rook( 'U', 1, a, 1, ip, -1.0d0, rcond, w, iw, info)
413 CALL chkxer( 'DSYCON_ROOK', infot, nout, lerr, ok )
414*
415 ELSE IF( lsamen( 2, c2, 'SK' ) ) THEN
416*
417* Test error exits of the routines that use factorization
418* of a symmetric indefinite matrix with rook
419* (bounded Bunch-Kaufman) pivoting with the new storage
420* format for factors L ( or U) and D.
421*
422* L (or U) is stored in A, diagonal of D is stored on the
423* diagonal of A, subdiagonal of D is stored in a separate array E.
424*
425* DSYTRF_RK
426*
427 srnamt = 'DSYTRF_RK'
428 infot = 1
429 CALL dsytrf_rk( '/', 0, a, 1, e, ip, w, 1, info )
430 CALL chkxer( 'DSYTRF_RK', infot, nout, lerr, ok )
431 infot = 2
432 CALL dsytrf_rk( 'U', -1, a, 1, e, ip, w, 1, info )
433 CALL chkxer( 'DSYTRF_RK', infot, nout, lerr, ok )
434 infot = 4
435 CALL dsytrf_rk( 'U', 2, a, 1, e, ip, w, 1, info )
436 CALL chkxer( 'DSYTRF_RK', infot, nout, lerr, ok )
437 infot = 8
438 CALL dsytrf_rk( 'U', 0, a, 1, e, ip, w, 0, info )
439 CALL chkxer( 'DSYTRF_RK', infot, nout, lerr, ok )
440 infot = 8
441 CALL dsytrf_rk( 'U', 0, a, 1, e, ip, w, -2, info )
442 CALL chkxer( 'DSYTRF_RK', infot, nout, lerr, ok )
443*
444* DSYTF2_RK
445*
446 srnamt = 'DSYTF2_RK'
447 infot = 1
448 CALL dsytf2_rk( '/', 0, a, 1, e, ip, info )
449 CALL chkxer( 'DSYTF2_RK', infot, nout, lerr, ok )
450 infot = 2
451 CALL dsytf2_rk( 'U', -1, a, 1, e, ip, info )
452 CALL chkxer( 'DSYTF2_RK', infot, nout, lerr, ok )
453 infot = 4
454 CALL dsytf2_rk( 'U', 2, a, 1, e, ip, info )
455 CALL chkxer( 'DSYTF2_RK', infot, nout, lerr, ok )
456*
457* DSYTRI_3
458*
459 srnamt = 'DSYTRI_3'
460 infot = 1
461 CALL dsytri_3( '/', 0, a, 1, e, ip, w, 1, info )
462 CALL chkxer( 'DSYTRI_3', infot, nout, lerr, ok )
463 infot = 2
464 CALL dsytri_3( 'U', -1, a, 1, e, ip, w, 1, info )
465 CALL chkxer( 'DSYTRI_3', infot, nout, lerr, ok )
466 infot = 4
467 CALL dsytri_3( 'U', 2, a, 1, e, ip, w, 1, info )
468 CALL chkxer( 'DSYTRI_3', infot, nout, lerr, ok )
469 infot = 8
470 CALL dsytri_3( 'U', 0, a, 1, e, ip, w, 0, info )
471 CALL chkxer( 'DSYTRI_3', infot, nout, lerr, ok )
472 infot = 8
473 CALL dsytri_3( 'U', 0, a, 1, e, ip, w, -2, info )
474 CALL chkxer( 'DSYTRI_3', infot, nout, lerr, ok )
475*
476* DSYTRI_3X
477*
478 srnamt = 'DSYTRI_3X'
479 infot = 1
480 CALL dsytri_3x( '/', 0, a, 1, e, ip, w, 1, info )
481 CALL chkxer( 'DSYTRI_3X', infot, nout, lerr, ok )
482 infot = 2
483 CALL dsytri_3x( 'U', -1, a, 1, e, ip, w, 1, info )
484 CALL chkxer( 'DSYTRI_3X', infot, nout, lerr, ok )
485 infot = 4
486 CALL dsytri_3x( 'U', 2, a, 1, e, ip, w, 1, info )
487 CALL chkxer( 'DSYTRI_3X', infot, nout, lerr, ok )
488*
489* DSYTRS_3
490*
491 srnamt = 'DSYTRS_3'
492 infot = 1
493 CALL dsytrs_3( '/', 0, 0, a, 1, e, ip, b, 1, info )
494 CALL chkxer( 'DSYTRS_3', infot, nout, lerr, ok )
495 infot = 2
496 CALL dsytrs_3( 'U', -1, 0, a, 1, e, ip, b, 1, info )
497 CALL chkxer( 'DSYTRS_3', infot, nout, lerr, ok )
498 infot = 3
499 CALL dsytrs_3( 'U', 0, -1, a, 1, e, ip, b, 1, info )
500 CALL chkxer( 'DSYTRS_3', infot, nout, lerr, ok )
501 infot = 5
502 CALL dsytrs_3( 'U', 2, 1, a, 1, e, ip, b, 2, info )
503 CALL chkxer( 'DSYTRS_3', infot, nout, lerr, ok )
504 infot = 9
505 CALL dsytrs_3( 'U', 2, 1, a, 2, e, ip, b, 1, info )
506 CALL chkxer( 'DSYTRS_3', infot, nout, lerr, ok )
507*
508* DSYCON_3
509*
510 srnamt = 'DSYCON_3'
511 infot = 1
512 CALL dsycon_3( '/', 0, a, 1, e, ip, anrm, rcond, w, iw,
513 $ info )
514 CALL chkxer( 'DSYCON_3', infot, nout, lerr, ok )
515 infot = 2
516 CALL dsycon_3( 'U', -1, a, 1, e, ip, anrm, rcond, w, iw,
517 $ info )
518 CALL chkxer( 'DSYCON_3', infot, nout, lerr, ok )
519 infot = 4
520 CALL dsycon_3( 'U', 2, a, 1, e, ip, anrm, rcond, w, iw,
521 $ info )
522 CALL chkxer( 'DSYCON_3', infot, nout, lerr, ok )
523 infot = 7
524 CALL dsycon_3( 'U', 1, a, 1, e, ip, -1.0d0, rcond, w, iw,
525 $ info)
526 CALL chkxer( 'DSYCON_3', infot, nout, lerr, ok )
527*
528 ELSE IF( lsamen( 2, c2, 'SP' ) ) THEN
529*
530* Test error exits of the routines that use factorization
531* of a symmetric indefinite packed matrix with partial
532* (Bunch-Kaufman) pivoting.
533*
534* DSPTRF
535*
536 srnamt = 'DSPTRF'
537 infot = 1
538 CALL dsptrf( '/', 0, a, ip, info )
539 CALL chkxer( 'DSPTRF', infot, nout, lerr, ok )
540 infot = 2
541 CALL dsptrf( 'U', -1, a, ip, info )
542 CALL chkxer( 'DSPTRF', infot, nout, lerr, ok )
543*
544* DSPTRI
545*
546 srnamt = 'DSPTRI'
547 infot = 1
548 CALL dsptri( '/', 0, a, ip, w, info )
549 CALL chkxer( 'DSPTRI', infot, nout, lerr, ok )
550 infot = 2
551 CALL dsptri( 'U', -1, a, ip, w, info )
552 CALL chkxer( 'DSPTRI', infot, nout, lerr, ok )
553*
554* DSPTRS
555*
556 srnamt = 'DSPTRS'
557 infot = 1
558 CALL dsptrs( '/', 0, 0, a, ip, b, 1, info )
559 CALL chkxer( 'DSPTRS', infot, nout, lerr, ok )
560 infot = 2
561 CALL dsptrs( 'U', -1, 0, a, ip, b, 1, info )
562 CALL chkxer( 'DSPTRS', infot, nout, lerr, ok )
563 infot = 3
564 CALL dsptrs( 'U', 0, -1, a, ip, b, 1, info )
565 CALL chkxer( 'DSPTRS', infot, nout, lerr, ok )
566 infot = 7
567 CALL dsptrs( 'U', 2, 1, a, ip, b, 1, info )
568 CALL chkxer( 'DSPTRS', infot, nout, lerr, ok )
569*
570* DSPRFS
571*
572 srnamt = 'DSPRFS'
573 infot = 1
574 CALL dsprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, iw,
575 $ info )
576 CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
577 infot = 2
578 CALL dsprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, iw,
579 $ info )
580 CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
581 infot = 3
582 CALL dsprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, iw,
583 $ info )
584 CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
585 infot = 8
586 CALL dsprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, iw,
587 $ info )
588 CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
589 infot = 10
590 CALL dsprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, iw,
591 $ info )
592 CALL chkxer( 'DSPRFS', infot, nout, lerr, ok )
593*
594* DSPCON
595*
596 srnamt = 'DSPCON'
597 infot = 1
598 CALL dspcon( '/', 0, a, ip, anrm, rcond, w, iw, info )
599 CALL chkxer( 'DSPCON', infot, nout, lerr, ok )
600 infot = 2
601 CALL dspcon( 'U', -1, a, ip, anrm, rcond, w, iw, info )
602 CALL chkxer( 'DSPCON', infot, nout, lerr, ok )
603 infot = 5
604 CALL dspcon( 'U', 1, a, ip, -1.0d0, rcond, w, iw, info )
605 CALL chkxer( 'DSPCON', infot, nout, lerr, ok )
606 END IF
607*
608* Print a summary line.
609*
610 CALL alaesm( path, ok, nout )
611*
612 RETURN
613*
614* End of DERRSYX
615*
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
subroutine dsycon_3(uplo, n, a, lda, e, ipiv, anorm, rcond, work, iwork, info)
DSYCON_3
Definition dsycon_3.f:169
subroutine dsycon_rook(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
DSYCON_ROOK
subroutine dsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
DSYCON
Definition dsycon.f:128
subroutine dsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DSYRFS
Definition dsyrfs.f:190
subroutine dsyrfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
DSYRFSX
Definition dsyrfsx.f:401
subroutine dsytf2_rk(uplo, n, a, lda, e, ipiv, info)
DSYTF2_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Ka...
Definition dsytf2_rk.f:239
subroutine dsytf2_rook(uplo, n, a, lda, ipiv, info)
DSYTF2_ROOK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-...
subroutine dsytf2(uplo, n, a, lda, ipiv, info)
DSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting ...
Definition dsytf2.f:192
subroutine dsytrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
DSYTRF_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Ka...
Definition dsytrf_rk.f:257
subroutine dsytrf_rook(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRF_ROOK
subroutine dsytrf(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRF
Definition dsytrf.f:180
subroutine dsytri2(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRI2
Definition dsytri2.f:125
subroutine dsytri2x(uplo, n, a, lda, ipiv, work, nb, info)
DSYTRI2X
Definition dsytri2x.f:118
subroutine dsytri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
DSYTRI_3
Definition dsytri_3.f:169
subroutine dsytri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
DSYTRI_3X
Definition dsytri_3x.f:158
subroutine dsytri_rook(uplo, n, a, lda, ipiv, work, info)
DSYTRI_ROOK
subroutine dsytri(uplo, n, a, lda, ipiv, work, info)
DSYTRI
Definition dsytri.f:112
subroutine dsytrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
DSYTRS_3
Definition dsytrs_3.f:163
subroutine dsytrs_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
DSYTRS_ROOK
subroutine dsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
DSYTRS
Definition dsytrs.f:118
subroutine dspcon(uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)
DSPCON
Definition dspcon.f:124
subroutine dsprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DSPRFS
Definition dsprfs.f:178
subroutine dsptrf(uplo, n, ap, ipiv, info)
DSPTRF
Definition dsptrf.f:157
subroutine dsptri(uplo, n, ap, ipiv, work, info)
DSPTRI
Definition dsptri.f:107
subroutine dsptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
DSPTRS
Definition dsptrs.f:113
logical function lsamen(n, ca, cb)
LSAMEN
Definition lsamen.f:72
Here is the call graph for this function: