LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zgesvxx()

subroutine zgesvxx ( character fact,
character trans,
integer n,
integer nrhs,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
character equed,
double precision, dimension( * ) r,
double precision, dimension( * ) c,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldx , * ) x,
integer ldx,
double precision rcond,
double precision rpvgrw,
double precision, dimension( * ) berr,
integer n_err_bnds,
double precision, dimension( nrhs, * ) err_bnds_norm,
double precision, dimension( nrhs, * ) err_bnds_comp,
integer nparams,
double precision, dimension( * ) params,
complex*16, dimension( * ) work,
double precision, dimension( * ) rwork,
integer info )

ZGESVXX computes the solution to system of linear equations A * X = B for GE matrices

Download ZGESVXX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    ZGESVXX uses the LU factorization to compute the solution to a
!>    complex*16 system of linear equations  A * X = B,  where A is an
!>    N-by-N matrix and X and B are N-by-NRHS matrices.
!>
!>    If requested, both normwise and maximum componentwise error bounds
!>    are returned. ZGESVXX will return a solution with a tiny
!>    guaranteed error (O(eps) where eps is the working machine
!>    precision) unless the matrix is very ill-conditioned, in which
!>    case a warning is returned. Relevant condition numbers also are
!>    calculated and returned.
!>
!>    ZGESVXX accepts user-provided factorizations and equilibration
!>    factors; see the definitions of the FACT and EQUED options.
!>    Solving with refinement and using a factorization from a previous
!>    ZGESVXX call will also produce a solution with either O(eps)
!>    errors or warnings, but we cannot make that claim for general
!>    user-provided factorizations and equilibration factors if they
!>    differ from what ZGESVXX would itself produce.
!> 
Description:
!>
!>    The following steps are performed:
!>
!>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
!>    the system:
!>
!>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
!>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
!>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
!>
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
!>    or diag(C)*B (if TRANS = 'T' or 'C').
!>
!>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
!>    the matrix A (after equilibration if FACT = 'E') as
!>
!>      A = P * L * U,
!>
!>    where P is a permutation matrix, L is a unit lower triangular
!>    matrix, and U is upper triangular.
!>
!>    3. If some U(i,i)=0, so that U is exactly singular, then the
!>    routine returns with INFO = i. Otherwise, the factored form of A
!>    is used to estimate the condition number of the matrix A (see
!>    argument RCOND). If the reciprocal of the condition number is less
!>    than machine precision, the routine still goes on to solve for X
!>    and compute error bounds as described below.
!>
!>    4. The system of equations is solved for X using the factored form
!>    of A.
!>
!>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
!>    the routine will use iterative refinement to try to get a small
!>    error and error bounds.  Refinement calculates the residual to at
!>    least twice the working precision.
!>
!>    6. If equilibration was used, the matrix X is premultiplied by
!>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
!>    that it solves the original system before equilibration.
!> 
!>     Some optional parameters are bundled in the PARAMS array.  These
!>     settings determine how refinement is performed, but often the
!>     defaults are acceptable.  If the defaults are acceptable, users
!>     can pass NPARAMS = 0 which prevents the source code from accessing
!>     the PARAMS argument.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>     Specifies whether or not the factored form of the matrix A is
!>     supplied on entry, and if not, whether the matrix A should be
!>     equilibrated before it is factored.
!>       = 'F':  On entry, AF and IPIV contain the factored form of A.
!>               If EQUED is not 'N', the matrix A has been
!>               equilibrated with scaling factors given by R and C.
!>               A, AF, and IPIV are not modified.
!>       = 'N':  The matrix A will be copied to AF and factored.
!>       = 'E':  The matrix A will be equilibrated if necessary, then
!>               copied to AF and factored.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>     Specifies the form of the system of equations:
!>       = 'N':  A * X = B     (No transpose)
!>       = 'T':  A**T * X = B  (Transpose)
!>       = 'C':  A**H * X = B  (Conjugate Transpose)
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices B and X.  NRHS >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>     On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
!>     not 'N', then A must have been equilibrated by the scaling
!>     factors in R and/or C.  A is not modified if FACT = 'F' or
!>     'N', or if FACT = 'E' and EQUED = 'N' on exit.
!>
!>     On exit, if EQUED .ne. 'N', A is scaled as follows:
!>     EQUED = 'R':  A := diag(R) * A
!>     EQUED = 'C':  A := A * diag(C)
!>     EQUED = 'B':  A := diag(R) * A * diag(C).
!> 
[in]LDA
!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]AF
!>          AF is COMPLEX*16 array, dimension (LDAF,N)
!>     If FACT = 'F', then AF is an input argument and on entry
!>     contains the factors L and U from the factorization
!>     A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then
!>     AF is the factored form of the equilibrated matrix A.
!>
!>     If FACT = 'N', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then AF is an output argument and on exit
!>     returns the factors L and U from the factorization A = P*L*U
!>     of the equilibrated matrix A (see the description of A for
!>     the form of the equilibrated matrix).
!> 
[in]LDAF
!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     If FACT = 'F', then IPIV is an input argument and on entry
!>     contains the pivot indices from the factorization A = P*L*U
!>     as computed by ZGETRF; row i of the matrix was interchanged
!>     with row IPIV(i).
!>
!>     If FACT = 'N', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the original matrix A.
!>
!>     If FACT = 'E', then IPIV is an output argument and on exit
!>     contains the pivot indices from the factorization A = P*L*U
!>     of the equilibrated matrix A.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>     Specifies the form of equilibration that was done.
!>       = 'N':  No equilibration (always true if FACT = 'N').
!>       = 'R':  Row equilibration, i.e., A has been premultiplied by
!>               diag(R).
!>       = 'C':  Column equilibration, i.e., A has been postmultiplied
!>               by diag(C).
!>       = 'B':  Both row and column equilibration, i.e., A has been
!>               replaced by diag(R) * A * diag(C).
!>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>     output argument.
!> 
[in,out]R
!>          R is DOUBLE PRECISION array, dimension (N)
!>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
!>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
!>     is not accessed.  R is an input argument if FACT = 'F';
!>     otherwise, R is an output argument.  If FACT = 'F' and
!>     EQUED = 'R' or 'B', each element of R must be positive.
!>     If R is output, each element of R is a power of the radix.
!>     If R is input, each element of R should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]C
!>          C is DOUBLE PRECISION array, dimension (N)
!>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
!>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
!>     is not accessed.  C is an input argument if FACT = 'F';
!>     otherwise, C is an output argument.  If FACT = 'F' and
!>     EQUED = 'C' or 'B', each element of C must be positive.
!>     If C is output, each element of C is a power of the radix.
!>     If C is input, each element of C should be a power of the radix
!>     to ensure a reliable solution and error estimates. Scaling by
!>     powers of the radix does not cause rounding errors unless the
!>     result underflows or overflows. Rounding errors during scaling
!>     lead to refining with a matrix that is not equivalent to the
!>     input matrix, producing error estimates that may not be
!>     reliable.
!> 
[in,out]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>     On entry, the N-by-NRHS right hand side matrix B.
!>     On exit,
!>     if EQUED = 'N', B is not modified;
!>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
!>        diag(R)*B;
!>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
!>        overwritten by diag(C)*B.
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is COMPLEX*16 array, dimension (LDX,NRHS)
!>     If INFO = 0, the N-by-NRHS solution matrix X to the original
!>     system of equations.  Note that A and B are modified on exit
!>     if EQUED .ne. 'N', and the solution to the equilibrated system is
!>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
!>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
!> 
[in]LDX
!>          LDX is INTEGER
!>     The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is DOUBLE PRECISION
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[out]RPVGRW
!>          RPVGRW is DOUBLE PRECISION
!>     Reciprocal pivot growth.  On exit, this contains the reciprocal
!>     pivot growth factor norm(A)/norm(U). The 
!>     norm is used.  If this is much less than 1, then the stability of
!>     the LU factorization of the (equilibrated) matrix A could be poor.
!>     This also means that the solution X, estimated condition numbers,
!>     and error bounds could be unreliable. If factorization fails with
!>     0<INFO<=N, then this contains the reciprocal pivot growth factor
!>     for the leading INFO columns of A.  In ZGESVX, this quantity is
!>     returned in WORK(1).
!> 
[out]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>     Componentwise relative backward error.  This is the
!>     componentwise relative backward error of each solution vector X(j)
!>     (i.e., the smallest relative change in any element of A or B that
!>     makes X(j) an exact solution).
!> 
[in]N_ERR_BNDS
!>          N_ERR_BNDS is INTEGER
!>     Number of error bounds to return for each right hand side
!>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
!>     ERR_BNDS_COMP below.
!> 
[out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * dlamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * dlamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * dlamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * dlamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * dlamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * dlamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]NPARAMS
!>          NPARAMS is INTEGER
!>     Specifies the number of parameters set in PARAMS.  If <= 0, the
!>     PARAMS array is never referenced and default values are used.
!> 
[in,out]PARAMS
!>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
!>     Specifies algorithm parameters.  If an entry is < 0.0, then
!>     that entry will be filled with default value used for that
!>     parameter.  Only positions up to NPARAMS are accessed; defaults
!>     are used for higher-numbered parameters.
!>
!>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
!>            refinement or not.
!>         Default: 1.0D+0
!>            = 0.0:  No refinement is performed, and no error bounds are
!>                    computed.
!>            = 1.0:  Use the extra-precise refinement algorithm.
!>              (other values are reserved for future use)
!>
!>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
!>            computations allowed for refinement.
!>         Default: 10
!>         Aggressive: Set to 100 to permit convergence using approximate
!>                     factorizations or factorizations other than LU. If
!>                     the factorization uses a technique other than
!>                     Gaussian elimination, the guarantees in
!>                     err_bnds_norm and err_bnds_comp may no longer be
!>                     trustworthy.
!>
!>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
!>            will attempt to find a solution with small componentwise
!>            relative error in the double-precision algorithm.  Positive
!>            is true, 0.0 is false.
!>         Default: 1.0 (attempt componentwise convergence)
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (2*N)
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit. The solution to every right-hand side is
!>         guaranteed.
!>       < 0:  If INFO = -i, the i-th argument had an illegal value
!>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
!>         has been completed, but the factor U is exactly singular, so
!>         the solution and error bounds could not be computed. RCOND = 0
!>         is returned.
!>       = N+J: The solution corresponding to the Jth right-hand side is
!>         not guaranteed. The solutions corresponding to other right-
!>         hand sides K with K > J may not be guaranteed as well, but
!>         only the first such right-hand side is reported. If a small
!>         componentwise error is not requested (PARAMS(3) = 0.0) then
!>         the Jth right-hand side is the first with a normwise error
!>         bound that is not guaranteed (the smallest J such
!>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
!>         the Jth right-hand side is the first with either a normwise or
!>         componentwise error bound that is not guaranteed (the smallest
!>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
!>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
!>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
!>         about all of the right-hand sides check ERR_BNDS_NORM or
!>         ERR_BNDS_COMP.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 533 of file zgesvxx.f.

539*
540* -- LAPACK driver routine --
541* -- LAPACK is a software package provided by Univ. of Tennessee, --
542* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
543*
544* .. Scalar Arguments ..
545 CHARACTER EQUED, FACT, TRANS
546 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
547 $ N_ERR_BNDS
548 DOUBLE PRECISION RCOND, RPVGRW
549* ..
550* .. Array Arguments ..
551 INTEGER IPIV( * )
552 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
553 $ X( LDX , * ),WORK( * )
554 DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ),
555 $ ERR_BNDS_NORM( NRHS, * ),
556 $ ERR_BNDS_COMP( NRHS, * ), RWORK( * )
557* ..
558*
559* ==================================================================
560*
561* .. Parameters ..
562 DOUBLE PRECISION ZERO, ONE
563 parameter( zero = 0.0d+0, one = 1.0d+0 )
564 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
565 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
566 INTEGER CMP_ERR_I, PIV_GROWTH_I
567 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
568 $ berr_i = 3 )
569 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
570 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
571 $ piv_growth_i = 9 )
572* ..
573* .. Local Scalars ..
574 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
575 INTEGER INFEQU, J
576 DOUBLE PRECISION AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
577 $ ROWCND, SMLNUM
578* ..
579* .. External Functions ..
580 EXTERNAL lsame, dlamch, zla_gerpvgrw
581 LOGICAL LSAME
582 DOUBLE PRECISION DLAMCH, ZLA_GERPVGRW
583* ..
584* .. External Subroutines ..
585 EXTERNAL zgeequb, zgetrf, zgetrs, zlacpy,
586 $ zlaqge,
588* ..
589* .. Intrinsic Functions ..
590 INTRINSIC max, min
591* ..
592* .. Executable Statements ..
593*
594 info = 0
595 nofact = lsame( fact, 'N' )
596 equil = lsame( fact, 'E' )
597 notran = lsame( trans, 'N' )
598 smlnum = dlamch( 'Safe minimum' )
599 bignum = one / smlnum
600 IF( nofact .OR. equil ) THEN
601 equed = 'N'
602 rowequ = .false.
603 colequ = .false.
604 ELSE
605 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
606 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
607 END IF
608*
609* Default is failure. If an input parameter is wrong or
610* factorization fails, make everything look horrible. Only the
611* pivot growth is set here, the rest is initialized in ZGERFSX.
612*
613 rpvgrw = zero
614*
615* Test the input parameters. PARAMS is not tested until ZGERFSX.
616*
617 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
618 $ lsame( fact, 'F' ) ) THEN
619 info = -1
620 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
621 $ lsame( trans, 'C' ) ) THEN
622 info = -2
623 ELSE IF( n.LT.0 ) THEN
624 info = -3
625 ELSE IF( nrhs.LT.0 ) THEN
626 info = -4
627 ELSE IF( lda.LT.max( 1, n ) ) THEN
628 info = -6
629 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
630 info = -8
631 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
632 $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
633 info = -10
634 ELSE
635 IF( rowequ ) THEN
636 rcmin = bignum
637 rcmax = zero
638 DO 10 j = 1, n
639 rcmin = min( rcmin, r( j ) )
640 rcmax = max( rcmax, r( j ) )
641 10 CONTINUE
642 IF( rcmin.LE.zero ) THEN
643 info = -11
644 ELSE IF( n.GT.0 ) THEN
645 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
646 ELSE
647 rowcnd = one
648 END IF
649 END IF
650 IF( colequ .AND. info.EQ.0 ) THEN
651 rcmin = bignum
652 rcmax = zero
653 DO 20 j = 1, n
654 rcmin = min( rcmin, c( j ) )
655 rcmax = max( rcmax, c( j ) )
656 20 CONTINUE
657 IF( rcmin.LE.zero ) THEN
658 info = -12
659 ELSE IF( n.GT.0 ) THEN
660 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
661 ELSE
662 colcnd = one
663 END IF
664 END IF
665 IF( info.EQ.0 ) THEN
666 IF( ldb.LT.max( 1, n ) ) THEN
667 info = -14
668 ELSE IF( ldx.LT.max( 1, n ) ) THEN
669 info = -16
670 END IF
671 END IF
672 END IF
673*
674 IF( info.NE.0 ) THEN
675 CALL xerbla( 'ZGESVXX', -info )
676 RETURN
677 END IF
678*
679 IF( equil ) THEN
680*
681* Compute row and column scalings to equilibrate the matrix A.
682*
683 CALL zgeequb( n, n, a, lda, r, c, rowcnd, colcnd, amax,
684 $ infequ )
685 IF( infequ.EQ.0 ) THEN
686*
687* Equilibrate the matrix.
688*
689 CALL zlaqge( n, n, a, lda, r, c, rowcnd, colcnd, amax,
690 $ equed )
691 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
692 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
693 END IF
694*
695* If the scaling factors are not applied, set them to 1.0.
696*
697 IF ( .NOT.rowequ ) THEN
698 DO j = 1, n
699 r( j ) = 1.0d+0
700 END DO
701 END IF
702 IF ( .NOT.colequ ) THEN
703 DO j = 1, n
704 c( j ) = 1.0d+0
705 END DO
706 END IF
707 END IF
708*
709* Scale the right-hand side.
710*
711 IF( notran ) THEN
712 IF( rowequ ) CALL zlascl2( n, nrhs, r, b, ldb )
713 ELSE
714 IF( colequ ) CALL zlascl2( n, nrhs, c, b, ldb )
715 END IF
716*
717 IF( nofact .OR. equil ) THEN
718*
719* Compute the LU factorization of A.
720*
721 CALL zlacpy( 'Full', n, n, a, lda, af, ldaf )
722 CALL zgetrf( n, n, af, ldaf, ipiv, info )
723*
724* Return if INFO is non-zero.
725*
726 IF( info.GT.0 ) THEN
727*
728* Pivot in column INFO is exactly 0
729* Compute the reciprocal pivot growth factor of the
730* leading rank-deficient INFO columns of A.
731*
732 rpvgrw = zla_gerpvgrw( n, info, a, lda, af, ldaf )
733 RETURN
734 END IF
735 END IF
736*
737* Compute the reciprocal pivot growth factor RPVGRW.
738*
739 rpvgrw = zla_gerpvgrw( n, n, a, lda, af, ldaf )
740*
741* Compute the solution matrix X.
742*
743 CALL zlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
744 CALL zgetrs( trans, n, nrhs, af, ldaf, ipiv, x, ldx, info )
745*
746* Use iterative refinement to improve the computed solution and
747* compute error bounds and backward error estimates for it.
748*
749 CALL zgerfsx( trans, equed, n, nrhs, a, lda, af, ldaf,
750 $ ipiv, r, c, b, ldb, x, ldx, rcond, berr,
751 $ n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params,
752 $ work, rwork, info )
753*
754* Scale solutions.
755*
756 IF ( colequ .AND. notran ) THEN
757 CALL zlascl2 ( n, nrhs, c, x, ldx )
758 ELSE IF ( rowequ .AND. .NOT.notran ) THEN
759 CALL zlascl2 ( n, nrhs, r, x, ldx )
760 END IF
761*
762 RETURN
763*
764* End of ZGESVXX
765*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgeequb(m, n, a, lda, r, c, rowcnd, colcnd, amax, info)
ZGEEQUB
Definition zgeequb.f:145
subroutine zgerfsx(trans, equed, n, nrhs, a, lda, af, ldaf, ipiv, r, c, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZGERFSX
Definition zgerfsx.f:413
subroutine zgetrf(m, n, a, lda, ipiv, info)
ZGETRF
Definition zgetrf.f:106
subroutine zgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
ZGETRS
Definition zgetrs.f:119
double precision function zla_gerpvgrw(n, ncols, a, lda, af, ldaf)
ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
subroutine zlaqge(m, n, a, lda, r, c, rowcnd, colcnd, amax, equed)
ZLAQGE scales a general rectangular matrix, using row and column scaling factors computed by sgeequ.
Definition zlaqge.f:141
subroutine zlascl2(m, n, d, x, ldx)
ZLASCL2 performs diagonal scaling on a matrix.
Definition zlascl2.f:89
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: