LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zla_gerpvgrw.f
Go to the documentation of this file.
1*> \brief \b ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZLA_GERPVGRW + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gerpvgrw.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gerpvgrw.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gerpvgrw.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* DOUBLE PRECISION FUNCTION ZLA_GERPVGRW( N, NCOLS, A, LDA, AF,
20* LDAF )
21*
22* .. Scalar Arguments ..
23* INTEGER N, NCOLS, LDA, LDAF
24* ..
25* .. Array Arguments ..
26* COMPLEX*16 A( LDA, * ), AF( LDAF, * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*>
36*> ZLA_GERPVGRW computes the reciprocal pivot growth factor
37*> norm(A)/norm(U). The "max absolute element" norm is used. If this is
38*> much less than 1, the stability of the LU factorization of the
39*> (equilibrated) matrix A could be poor. This also means that the
40*> solution X, estimated condition numbers, and error bounds could be
41*> unreliable.
42*> \endverbatim
43*
44* Arguments:
45* ==========
46*
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The number of linear equations, i.e., the order of the
51*> matrix A. N >= 0.
52*> \endverbatim
53*>
54*> \param[in] NCOLS
55*> \verbatim
56*> NCOLS is INTEGER
57*> The number of columns of the matrix A. NCOLS >= 0.
58*> \endverbatim
59*>
60*> \param[in] A
61*> \verbatim
62*> A is COMPLEX*16 array, dimension (LDA,N)
63*> On entry, the N-by-N matrix A.
64*> \endverbatim
65*>
66*> \param[in] LDA
67*> \verbatim
68*> LDA is INTEGER
69*> The leading dimension of the array A. LDA >= max(1,N).
70*> \endverbatim
71*>
72*> \param[in] AF
73*> \verbatim
74*> AF is COMPLEX*16 array, dimension (LDAF,N)
75*> The factors L and U from the factorization
76*> A = P*L*U as computed by ZGETRF.
77*> \endverbatim
78*>
79*> \param[in] LDAF
80*> \verbatim
81*> LDAF is INTEGER
82*> The leading dimension of the array AF. LDAF >= max(1,N).
83*> \endverbatim
84*
85* Authors:
86* ========
87*
88*> \author Univ. of Tennessee
89*> \author Univ. of California Berkeley
90*> \author Univ. of Colorado Denver
91*> \author NAG Ltd.
92*
93*> \ingroup la_gerpvgrw
94*
95* =====================================================================
96 DOUBLE PRECISION FUNCTION zla_gerpvgrw( N, NCOLS, A, LDA, AF,
97 $ LDAF )
98*
99* -- LAPACK computational routine --
100* -- LAPACK is a software package provided by Univ. of Tennessee, --
101* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
102*
103* .. Scalar Arguments ..
104 INTEGER n, ncols, lda, ldaf
105* ..
106* .. Array Arguments ..
107 COMPLEX*16 a( lda, * ), af( ldaf, * )
108* ..
109*
110* =====================================================================
111*
112* .. Local Scalars ..
113 INTEGER i, j
114 DOUBLE PRECISION amax, umax, rpvgrw
115 COMPLEX*16 zdum
116* ..
117* .. Intrinsic Functions ..
118 INTRINSIC max, min, abs, real, dimag
119* ..
120* .. Statement Functions ..
121 DOUBLE PRECISION cabs1
122* ..
123* .. Statement Function Definitions ..
124 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
125* ..
126* .. Executable Statements ..
127*
128 rpvgrw = 1.0d+0
129
130 DO j = 1, ncols
131 amax = 0.0d+0
132 umax = 0.0d+0
133 DO i = 1, n
134 amax = max( cabs1( a( i, j ) ), amax )
135 END DO
136 DO i = 1, j
137 umax = max( cabs1( af( i, j ) ), umax )
138 END DO
139 IF ( umax /= 0.0d+0 ) THEN
140 rpvgrw = min( amax / umax, rpvgrw )
141 END IF
142 END DO
143 zla_gerpvgrw = rpvgrw
144*
145* End of ZLA_GERPVGRW
146*
147 END
double precision function zla_gerpvgrw(n, ncols, a, lda, af, ldaf)
ZLA_GERPVGRW multiplies a square real matrix by a complex matrix.