LAPACK 3.12.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches
zdrvbd.f
Go to the documentation of this file.
1*> \brief \b ZDRVBD
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZDRVBD( NSIZES, MM, NN, NTYPES, DOTYPE, ISEED, THRESH,
12* A, LDA, U, LDU, VT, LDVT, ASAV, USAV, VTSAV, S,
13* SSAV, E, WORK, LWORK, RWORK, IWORK, NOUNIT,
14* INFO )
15*
16* .. Scalar Arguments ..
17* INTEGER INFO, LDA, LDU, LDVT, LWORK, NOUNIT, NSIZES,
18* \$ NTYPES
19* DOUBLE PRECISION THRESH
20* ..
21* .. Array Arguments ..
22* LOGICAL DOTYPE( * )
23* INTEGER ISEED( 4 ), IWORK( * ), MM( * ), NN( * )
24* DOUBLE PRECISION E( * ), RWORK( * ), S( * ), SSAV( * )
25* COMPLEX*16 A( LDA, * ), ASAV( LDA, * ), U( LDU, * ),
26* \$ USAV( LDU, * ), VT( LDVT, * ),
27* \$ VTSAV( LDVT, * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZDRVBD checks the singular value decomposition (SVD) driver ZGESVD,
37*> ZGESDD, ZGESVJ, ZGEJSV, ZGESVDX, and ZGESVDQ.
38*>
39*> ZGESVD and ZGESDD factors A = U diag(S) VT, where U and VT are
40*> unitary and diag(S) is diagonal with the entries of the array S on
41*> its diagonal. The entries of S are the singular values, nonnegative
42*> and stored in decreasing order. U and VT can be optionally not
43*> computed, overwritten on A, or computed partially.
44*>
45*> A is M by N. Let MNMIN = min( M, N ). S has dimension MNMIN.
46*> U can be M by M or M by MNMIN. VT can be N by N or MNMIN by N.
47*>
48*> When ZDRVBD is called, a number of matrix "sizes" (M's and N's)
49*> and a number of matrix "types" are specified. For each size (M,N)
50*> and each type of matrix, and for the minimal workspace as well as
51*> workspace adequate to permit blocking, an M x N matrix "A" will be
52*> generated and used to test the SVD routines. For each matrix, A will
53*> be factored as A = U diag(S) VT and the following 12 tests computed:
54*>
55*> Test for ZGESVD:
56*>
57*> (1) | A - U diag(S) VT | / ( |A| max(M,N) ulp )
58*>
59*> (2) | I - U'U | / ( M ulp )
60*>
61*> (3) | I - VT VT' | / ( N ulp )
62*>
63*> (4) S contains MNMIN nonnegative values in decreasing order.
64*> (Return 0 if true, 1/ULP if false.)
65*>
66*> (5) | U - Upartial | / ( M ulp ) where Upartial is a partially
67*> computed U.
68*>
69*> (6) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
70*> computed VT.
71*>
72*> (7) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
73*> vector of singular values from the partial SVD
74*>
75*> Test for ZGESDD:
76*>
77*> (8) | A - U diag(S) VT | / ( |A| max(M,N) ulp )
78*>
79*> (9) | I - U'U | / ( M ulp )
80*>
81*> (10) | I - VT VT' | / ( N ulp )
82*>
83*> (11) S contains MNMIN nonnegative values in decreasing order.
84*> (Return 0 if true, 1/ULP if false.)
85*>
86*> (12) | U - Upartial | / ( M ulp ) where Upartial is a partially
87*> computed U.
88*>
89*> (13) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
90*> computed VT.
91*>
92*> (14) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
93*> vector of singular values from the partial SVD
94*>
95*> Test for ZGESVDQ:
96*>
97*> (36) | A - U diag(S) VT | / ( |A| max(M,N) ulp )
98*>
99*> (37) | I - U'U | / ( M ulp )
100*>
101*> (38) | I - VT VT' | / ( N ulp )
102*>
103*> (39) S contains MNMIN nonnegative values in decreasing order.
104*> (Return 0 if true, 1/ULP if false.)
105*>
106*> Test for ZGESVJ:
107*>
108*> (15) | A - U diag(S) VT | / ( |A| max(M,N) ulp )
109*>
110*> (16) | I - U'U | / ( M ulp )
111*>
112*> (17) | I - VT VT' | / ( N ulp )
113*>
114*> (18) S contains MNMIN nonnegative values in decreasing order.
115*> (Return 0 if true, 1/ULP if false.)
116*>
117*> Test for ZGEJSV:
118*>
119*> (19) | A - U diag(S) VT | / ( |A| max(M,N) ulp )
120*>
121*> (20) | I - U'U | / ( M ulp )
122*>
123*> (21) | I - VT VT' | / ( N ulp )
124*>
125*> (22) S contains MNMIN nonnegative values in decreasing order.
126*> (Return 0 if true, 1/ULP if false.)
127*>
128*> Test for ZGESVDX( 'V', 'V', 'A' )/ZGESVDX( 'N', 'N', 'A' )
129*>
130*> (23) | A - U diag(S) VT | / ( |A| max(M,N) ulp )
131*>
132*> (24) | I - U'U | / ( M ulp )
133*>
134*> (25) | I - VT VT' | / ( N ulp )
135*>
136*> (26) S contains MNMIN nonnegative values in decreasing order.
137*> (Return 0 if true, 1/ULP if false.)
138*>
139*> (27) | U - Upartial | / ( M ulp ) where Upartial is a partially
140*> computed U.
141*>
142*> (28) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially
143*> computed VT.
144*>
145*> (29) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the
146*> vector of singular values from the partial SVD
147*>
148*> Test for ZGESVDX( 'V', 'V', 'I' )
149*>
150*> (30) | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp )
151*>
152*> (31) | I - U'U | / ( M ulp )
153*>
154*> (32) | I - VT VT' | / ( N ulp )
155*>
156*> Test for ZGESVDX( 'V', 'V', 'V' )
157*>
158*> (33) | U' A VT''' - diag(S) | / ( |A| max(M,N) ulp )
159*>
160*> (34) | I - U'U | / ( M ulp )
161*>
162*> (35) | I - VT VT' | / ( N ulp )
163*>
164*> The "sizes" are specified by the arrays MM(1:NSIZES) and
165*> NN(1:NSIZES); the value of each element pair (MM(j),NN(j))
166*> specifies one size. The "types" are specified by a logical array
167*> DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j"
168*> will be generated.
169*> Currently, the list of possible types is:
170*>
171*> (1) The zero matrix.
172*> (2) The identity matrix.
173*> (3) A matrix of the form U D V, where U and V are unitary and
174*> D has evenly spaced entries 1, ..., ULP with random signs
175*> on the diagonal.
176*> (4) Same as (3), but multiplied by the underflow-threshold / ULP.
177*> (5) Same as (3), but multiplied by the overflow-threshold * ULP.
178*> \endverbatim
179*
180* Arguments:
181* ==========
182*
183*> \param[in] NSIZES
184*> \verbatim
185*> NSIZES is INTEGER
186*> The number of sizes of matrices to use. If it is zero,
187*> ZDRVBD does nothing. It must be at least zero.
188*> \endverbatim
189*>
190*> \param[in] MM
191*> \verbatim
192*> MM is INTEGER array, dimension (NSIZES)
193*> An array containing the matrix "heights" to be used. For
194*> each j=1,...,NSIZES, if MM(j) is zero, then MM(j) and NN(j)
195*> will be ignored. The MM(j) values must be at least zero.
196*> \endverbatim
197*>
198*> \param[in] NN
199*> \verbatim
200*> NN is INTEGER array, dimension (NSIZES)
201*> An array containing the matrix "widths" to be used. For
202*> each j=1,...,NSIZES, if NN(j) is zero, then MM(j) and NN(j)
203*> will be ignored. The NN(j) values must be at least zero.
204*> \endverbatim
205*>
206*> \param[in] NTYPES
207*> \verbatim
208*> NTYPES is INTEGER
209*> The number of elements in DOTYPE. If it is zero, ZDRVBD
210*> does nothing. It must be at least zero. If it is MAXTYP+1
211*> and NSIZES is 1, then an additional type, MAXTYP+1 is
212*> defined, which is to use whatever matrices are in A and B.
213*> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
214*> DOTYPE(MAXTYP+1) is .TRUE. .
215*> \endverbatim
216*>
217*> \param[in] DOTYPE
218*> \verbatim
219*> DOTYPE is LOGICAL array, dimension (NTYPES)
220*> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
221*> of type j will be generated. If NTYPES is smaller than the
222*> maximum number of types defined (PARAMETER MAXTYP), then
223*> types NTYPES+1 through MAXTYP will not be generated. If
224*> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
225*> DOTYPE(NTYPES) will be ignored.
226*> \endverbatim
227*>
228*> \param[in,out] ISEED
229*> \verbatim
230*> ISEED is INTEGER array, dimension (4)
231*> On entry ISEED specifies the seed of the random number
232*> generator. The array elements should be between 0 and 4095;
233*> if not they will be reduced mod 4096. Also, ISEED(4) must
234*> be odd. The random number generator uses a linear
235*> congruential sequence limited to small integers, and so
236*> should produce machine independent random numbers. The
237*> values of ISEED are changed on exit, and can be used in the
238*> next call to ZDRVBD to continue the same random number
239*> sequence.
240*> \endverbatim
241*>
242*> \param[in] THRESH
243*> \verbatim
244*> THRESH is DOUBLE PRECISION
245*> A test will count as "failed" if the "error", computed as
246*> described above, exceeds THRESH. Note that the error
247*> is scaled to be O(1), so THRESH should be a reasonably
248*> small multiple of 1, e.g., 10 or 100. In particular,
249*> it should not depend on the precision (single vs. double)
250*> or the size of the matrix. It must be at least zero.
251*> \endverbatim
252*>
253*> \param[out] A
254*> \verbatim
255*> A is COMPLEX*16 array, dimension (LDA,max(NN))
256*> Used to hold the matrix whose singular values are to be
257*> computed. On exit, A contains the last matrix actually
258*> used.
259*> \endverbatim
260*>
261*> \param[in] LDA
262*> \verbatim
263*> LDA is INTEGER
264*> The leading dimension of A. It must be at
265*> least 1 and at least max( MM ).
266*> \endverbatim
267*>
268*> \param[out] U
269*> \verbatim
270*> U is COMPLEX*16 array, dimension (LDU,max(MM))
271*> Used to hold the computed matrix of right singular vectors.
272*> On exit, U contains the last such vectors actually computed.
273*> \endverbatim
274*>
275*> \param[in] LDU
276*> \verbatim
277*> LDU is INTEGER
278*> The leading dimension of U. It must be at
279*> least 1 and at least max( MM ).
280*> \endverbatim
281*>
282*> \param[out] VT
283*> \verbatim
284*> VT is COMPLEX*16 array, dimension (LDVT,max(NN))
285*> Used to hold the computed matrix of left singular vectors.
286*> On exit, VT contains the last such vectors actually computed.
287*> \endverbatim
288*>
289*> \param[in] LDVT
290*> \verbatim
291*> LDVT is INTEGER
292*> The leading dimension of VT. It must be at
293*> least 1 and at least max( NN ).
294*> \endverbatim
295*>
296*> \param[out] ASAV
297*> \verbatim
298*> ASAV is COMPLEX*16 array, dimension (LDA,max(NN))
299*> Used to hold a different copy of the matrix whose singular
300*> values are to be computed. On exit, A contains the last
301*> matrix actually used.
302*> \endverbatim
303*>
304*> \param[out] USAV
305*> \verbatim
306*> USAV is COMPLEX*16 array, dimension (LDU,max(MM))
307*> Used to hold a different copy of the computed matrix of
308*> right singular vectors. On exit, USAV contains the last such
309*> vectors actually computed.
310*> \endverbatim
311*>
312*> \param[out] VTSAV
313*> \verbatim
314*> VTSAV is COMPLEX*16 array, dimension (LDVT,max(NN))
315*> Used to hold a different copy of the computed matrix of
316*> left singular vectors. On exit, VTSAV contains the last such
317*> vectors actually computed.
318*> \endverbatim
319*>
320*> \param[out] S
321*> \verbatim
322*> S is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
323*> Contains the computed singular values.
324*> \endverbatim
325*>
326*> \param[out] SSAV
327*> \verbatim
328*> SSAV is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
329*> Contains another copy of the computed singular values.
330*> \endverbatim
331*>
332*> \param[out] E
333*> \verbatim
334*> E is DOUBLE PRECISION array, dimension (max(min(MM,NN)))
335*> Workspace for ZGESVD.
336*> \endverbatim
337*>
338*> \param[out] WORK
339*> \verbatim
340*> WORK is COMPLEX*16 array, dimension (LWORK)
341*> \endverbatim
342*>
343*> \param[in] LWORK
344*> \verbatim
345*> LWORK is INTEGER
346*> The number of entries in WORK. This must be at least
347*> MAX(3*MIN(M,N)+MAX(M,N)**2,5*MIN(M,N),3*MAX(M,N)) for all
348*> pairs (M,N)=(MM(j),NN(j))
349*> \endverbatim
350*>
351*> \param[out] RWORK
352*> \verbatim
353*> RWORK is DOUBLE PRECISION array,
354*> dimension ( 5*max(max(MM,NN)) )
355*> \endverbatim
356*>
357*> \param[out] IWORK
358*> \verbatim
359*> IWORK is INTEGER array, dimension at least 8*min(M,N)
360*> \endverbatim
361*>
362*> \param[in] NOUNIT
363*> \verbatim
364*> NOUNIT is INTEGER
365*> The FORTRAN unit number for printing out error messages
366*> (e.g., if a routine returns IINFO not equal to 0.)
367*> \endverbatim
368*>
369*> \param[out] INFO
370*> \verbatim
371*> INFO is INTEGER
372*> If 0, then everything ran OK.
373*> -1: NSIZES < 0
374*> -2: Some MM(j) < 0
375*> -3: Some NN(j) < 0
376*> -4: NTYPES < 0
377*> -7: THRESH < 0
378*> -10: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
379*> -12: LDU < 1 or LDU < MMAX.
380*> -14: LDVT < 1 or LDVT < NMAX, where NMAX is max( NN(j) ).
381*> -21: LWORK too small.
382*> If ZLATMS, or ZGESVD returns an error code, the
383*> absolute value of it is returned.
384*> \endverbatim
385*
386* Authors:
387* ========
388*
389*> \author Univ. of Tennessee
390*> \author Univ. of California Berkeley
391*> \author Univ. of Colorado Denver
392*> \author NAG Ltd.
393*
394*> \ingroup complex16_eig
395*
396* =====================================================================
397 SUBROUTINE zdrvbd( NSIZES, MM, NN, NTYPES, DOTYPE, ISEED, THRESH,
398 \$ A, LDA, U, LDU, VT, LDVT, ASAV, USAV, VTSAV, S,
399 \$ SSAV, E, WORK, LWORK, RWORK, IWORK, NOUNIT,
400 \$ INFO )
401*
402* -- LAPACK test routine --
403* -- LAPACK is a software package provided by Univ. of Tennessee, --
404* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
405*
406 IMPLICIT NONE
407*
408* .. Scalar Arguments ..
409 INTEGER INFO, LDA, LDU, LDVT, LWORK, NOUNIT, NSIZES,
410 \$ NTYPES
411 DOUBLE PRECISION THRESH
412* ..
413* .. Array Arguments ..
414 LOGICAL DOTYPE( * )
415 INTEGER ISEED( 4 ), IWORK( * ), MM( * ), NN( * )
416 DOUBLE PRECISION E( * ), RWORK( * ), S( * ), SSAV( * )
417 COMPLEX*16 A( LDA, * ), ASAV( LDA, * ), U( LDU, * ),
418 \$ usav( ldu, * ), vt( ldvt, * ),
419 \$ vtsav( ldvt, * ), work( * )
420* ..
421*
422* =====================================================================
423*
424* .. Parameters ..
425 DOUBLE PRECISION ZERO, ONE, TWO, HALF
426 PARAMETER ( ZERO = 0.0d0, one = 1.0d0, two = 2.0d0,
427 \$ half = 0.5d0 )
428 COMPLEX*16 CZERO, CONE
429 parameter( czero = ( 0.0d+0, 0.0d+0 ),
430 \$ cone = ( 1.0d+0, 0.0d+0 ) )
431 INTEGER MAXTYP
432 parameter( maxtyp = 5 )
433* ..
434* .. Local Scalars ..
436 CHARACTER JOBQ, JOBU, JOBVT, RANGE
437 INTEGER I, IINFO, IJQ, IJU, IJVT, IL, IU, ITEMP,
438 \$ iwspc, iwtmp, j, jsize, jtype, lswork, m,
439 \$ minwrk, mmax, mnmax, mnmin, mtypes, n,
440 \$ nerrs, nfail, nmax, ns, nsi, nsv, ntest,
441 \$ ntestf, ntestt, lrwork
442 DOUBLE PRECISION ANORM, DIF, DIV, OVFL, RTUNFL, ULP, ULPINV,
443 \$ UNFL, VL, VU
444* ..
445* .. Local Scalars for ZGESVDQ ..
446 INTEGER LIWORK, NUMRANK
447* ..
448* .. Local Arrays ..
449 CHARACTER CJOB( 4 ), CJOBR( 3 ), CJOBV( 2 )
450 INTEGER IOLDSD( 4 ), ISEED2( 4 )
451 DOUBLE PRECISION RESULT( 39 )
452* ..
453* .. External Functions ..
454 DOUBLE PRECISION DLAMCH, DLARND
455 EXTERNAL DLAMCH, DLARND
456* ..
457* .. External Subroutines ..
458 EXTERNAL alasvm, xerbla, zbdt01, zbdt05, zgesdd,
461* ..
462* .. Intrinsic Functions ..
463 INTRINSIC abs, dble, max, min
464* ..
465* .. Scalars in Common ..
466 CHARACTER*32 SRNAMT
467* ..
468* .. Common blocks ..
469 COMMON / srnamc / srnamt
470* ..
471* .. Data statements ..
472 DATA cjob / 'N', 'O', 'S', 'A' /
473 DATA cjobr / 'A', 'V', 'I' /
474 DATA cjobv / 'N', 'V' /
475* ..
476* .. Executable Statements ..
477*
478* Check for errors
479*
480 info = 0
481*
482* Important constants
483*
484 nerrs = 0
485 ntestt = 0
486 ntestf = 0
489 mmax = 1
490 nmax = 1
491 mnmax = 1
492 minwrk = 1
493 DO 10 j = 1, nsizes
494 mmax = max( mmax, mm( j ) )
495 IF( mm( j ).LT.0 )
497 nmax = max( nmax, nn( j ) )
498 IF( nn( j ).LT.0 )
500 mnmax = max( mnmax, min( mm( j ), nn( j ) ) )
501 minwrk = max( minwrk, max( 3*min( mm( j ),
502 \$ nn( j ) )+max( mm( j ), nn( j ) )**2, 5*min( mm( j ),
503 \$ nn( j ) ), 3*max( mm( j ), nn( j ) ) ) )
504 10 CONTINUE
505*
506* Check for errors
507*
508 IF( nsizes.LT.0 ) THEN
509 info = -1
510 ELSE IF( badmm ) THEN
511 info = -2
512 ELSE IF( badnn ) THEN
513 info = -3
514 ELSE IF( ntypes.LT.0 ) THEN
515 info = -4
516 ELSE IF( lda.LT.max( 1, mmax ) ) THEN
517 info = -10
518 ELSE IF( ldu.LT.max( 1, mmax ) ) THEN
519 info = -12
520 ELSE IF( ldvt.LT.max( 1, nmax ) ) THEN
521 info = -14
522 ELSE IF( minwrk.GT.lwork ) THEN
523 info = -21
524 END IF
525*
526 IF( info.NE.0 ) THEN
527 CALL xerbla( 'ZDRVBD', -info )
528 RETURN
529 END IF
530*
531* Quick return if nothing to do
532*
533 IF( nsizes.EQ.0 .OR. ntypes.EQ.0 )
534 \$ RETURN
535*
536* More Important constants
537*
538 unfl = dlamch( 'S' )
539 ovfl = one / unfl
540 ulp = dlamch( 'E' )
541 ulpinv = one / ulp
542 rtunfl = sqrt( unfl )
543*
544* Loop over sizes, types
545*
546 nerrs = 0
547*
548 DO 230 jsize = 1, nsizes
549 m = mm( jsize )
550 n = nn( jsize )
551 mnmin = min( m, n )
552*
553 IF( nsizes.NE.1 ) THEN
554 mtypes = min( maxtyp, ntypes )
555 ELSE
556 mtypes = min( maxtyp+1, ntypes )
557 END IF
558*
559 DO 220 jtype = 1, mtypes
560 IF( .NOT.dotype( jtype ) )
561 \$ GO TO 220
562 ntest = 0
563*
564 DO 20 j = 1, 4
565 ioldsd( j ) = iseed( j )
566 20 CONTINUE
567*
568* Compute "A"
569*
570 IF( mtypes.GT.maxtyp )
571 \$ GO TO 50
572*
573 IF( jtype.EQ.1 ) THEN
574*
575* Zero matrix
576*
577 CALL zlaset( 'Full', m, n, czero, czero, a, lda )
578 DO 30 i = 1, min( m, n )
579 s( i ) = zero
580 30 CONTINUE
581*
582 ELSE IF( jtype.EQ.2 ) THEN
583*
584* Identity matrix
585*
586 CALL zlaset( 'Full', m, n, czero, cone, a, lda )
587 DO 40 i = 1, min( m, n )
588 s( i ) = one
589 40 CONTINUE
590*
591 ELSE
592*
593* (Scaled) random matrix
594*
595 IF( jtype.EQ.3 )
596 \$ anorm = one
597 IF( jtype.EQ.4 )
598 \$ anorm = unfl / ulp
599 IF( jtype.EQ.5 )
600 \$ anorm = ovfl*ulp
601 CALL zlatms( m, n, 'U', iseed, 'N', s, 4, dble( mnmin ),
602 \$ anorm, m-1, n-1, 'N', a, lda, work, iinfo )
603 IF( iinfo.NE.0 ) THEN
604 WRITE( nounit, fmt = 9996 )'Generator', iinfo, m, n,
605 \$ jtype, ioldsd
606 info = abs( iinfo )
607 RETURN
608 END IF
609 END IF
610*
611 50 CONTINUE
612 CALL zlacpy( 'F', m, n, a, lda, asav, lda )
613*
614* Do for minimal and adequate (for blocking) workspace
615*
616 DO 210 iwspc = 1, 4
617*
618* Test for ZGESVD
619*
620 iwtmp = 2*min( m, n )+max( m, n )
621 lswork = iwtmp + ( iwspc-1 )*( lwork-iwtmp ) / 3
622 lswork = min( lswork, lwork )
623 lswork = max( lswork, 1 )
624 IF( iwspc.EQ.4 )
625 \$ lswork = lwork
626*
627 DO 60 j = 1, 35
628 result( j ) = -one
629 60 CONTINUE
630*
631* Factorize A
632*
633 IF( iwspc.GT.1 )
634 \$ CALL zlacpy( 'F', m, n, asav, lda, a, lda )
635 srnamt = 'ZGESVD'
636 CALL zgesvd( 'A', 'A', m, n, a, lda, ssav, usav, ldu,
637 \$ vtsav, ldvt, work, lswork, rwork, iinfo )
638 IF( iinfo.NE.0 ) THEN
639 WRITE( nounit, fmt = 9995 )'GESVD', iinfo, m, n,
640 \$ jtype, lswork, ioldsd
641 info = abs( iinfo )
642 RETURN
643 END IF
644*
645* Do tests 1--4
646*
647 CALL zbdt01( m, n, 0, asav, lda, usav, ldu, ssav, e,
648 \$ vtsav, ldvt, work, rwork, result( 1 ) )
649 IF( m.NE.0 .AND. n.NE.0 ) THEN
650 CALL zunt01( 'Columns', mnmin, m, usav, ldu, work,
651 \$ lwork, rwork, result( 2 ) )
652 CALL zunt01( 'Rows', mnmin, n, vtsav, ldvt, work,
653 \$ lwork, rwork, result( 3 ) )
654 END IF
655 result( 4 ) = 0
656 DO 70 i = 1, mnmin - 1
657 IF( ssav( i ).LT.ssav( i+1 ) )
658 \$ result( 4 ) = ulpinv
659 IF( ssav( i ).LT.zero )
660 \$ result( 4 ) = ulpinv
661 70 CONTINUE
662 IF( mnmin.GE.1 ) THEN
663 IF( ssav( mnmin ).LT.zero )
664 \$ result( 4 ) = ulpinv
665 END IF
666*
667* Do partial SVDs, comparing to SSAV, USAV, and VTSAV
668*
669 result( 5 ) = zero
670 result( 6 ) = zero
671 result( 7 ) = zero
672 DO 100 iju = 0, 3
673 DO 90 ijvt = 0, 3
674 IF( ( iju.EQ.3 .AND. ijvt.EQ.3 ) .OR.
675 \$ ( iju.EQ.1 .AND. ijvt.EQ.1 ) )GO TO 90
676 jobu = cjob( iju+1 )
677 jobvt = cjob( ijvt+1 )
678 CALL zlacpy( 'F', m, n, asav, lda, a, lda )
679 srnamt = 'ZGESVD'
680 CALL zgesvd( jobu, jobvt, m, n, a, lda, s, u, ldu,
681 \$ vt, ldvt, work, lswork, rwork, iinfo )
682*
683* Compare U
684*
685 dif = zero
686 IF( m.GT.0 .AND. n.GT.0 ) THEN
687 IF( iju.EQ.1 ) THEN
688 CALL zunt03( 'C', m, mnmin, m, mnmin, usav,
689 \$ ldu, a, lda, work, lwork, rwork,
690 \$ dif, iinfo )
691 ELSE IF( iju.EQ.2 ) THEN
692 CALL zunt03( 'C', m, mnmin, m, mnmin, usav,
693 \$ ldu, u, ldu, work, lwork, rwork,
694 \$ dif, iinfo )
695 ELSE IF( iju.EQ.3 ) THEN
696 CALL zunt03( 'C', m, m, m, mnmin, usav, ldu,
697 \$ u, ldu, work, lwork, rwork, dif,
698 \$ iinfo )
699 END IF
700 END IF
701 result( 5 ) = max( result( 5 ), dif )
702*
703* Compare VT
704*
705 dif = zero
706 IF( m.GT.0 .AND. n.GT.0 ) THEN
707 IF( ijvt.EQ.1 ) THEN
708 CALL zunt03( 'R', n, mnmin, n, mnmin, vtsav,
709 \$ ldvt, a, lda, work, lwork,
710 \$ rwork, dif, iinfo )
711 ELSE IF( ijvt.EQ.2 ) THEN
712 CALL zunt03( 'R', n, mnmin, n, mnmin, vtsav,
713 \$ ldvt, vt, ldvt, work, lwork,
714 \$ rwork, dif, iinfo )
715 ELSE IF( ijvt.EQ.3 ) THEN
716 CALL zunt03( 'R', n, n, n, mnmin, vtsav,
717 \$ ldvt, vt, ldvt, work, lwork,
718 \$ rwork, dif, iinfo )
719 END IF
720 END IF
721 result( 6 ) = max( result( 6 ), dif )
722*
723* Compare S
724*
725 dif = zero
726 div = max( dble( mnmin )*ulp*s( 1 ),
727 \$ dlamch( 'Safe minimum' ) )
728 DO 80 i = 1, mnmin - 1
729 IF( ssav( i ).LT.ssav( i+1 ) )
730 \$ dif = ulpinv
731 IF( ssav( i ).LT.zero )
732 \$ dif = ulpinv
733 dif = max( dif, abs( ssav( i )-s( i ) ) / div )
734 80 CONTINUE
735 result( 7 ) = max( result( 7 ), dif )
736 90 CONTINUE
737 100 CONTINUE
738*
739* Test for ZGESDD
740*
741 iwtmp = 2*mnmin*mnmin + 2*mnmin + max( m, n )
742 lswork = iwtmp + ( iwspc-1 )*( lwork-iwtmp ) / 3
743 lswork = min( lswork, lwork )
744 lswork = max( lswork, 1 )
745 IF( iwspc.EQ.4 )
746 \$ lswork = lwork
747*
748* Factorize A
749*
750 CALL zlacpy( 'F', m, n, asav, lda, a, lda )
751 srnamt = 'ZGESDD'
752 CALL zgesdd( 'A', m, n, a, lda, ssav, usav, ldu, vtsav,
753 \$ ldvt, work, lswork, rwork, iwork, iinfo )
754 IF( iinfo.NE.0 ) THEN
755 WRITE( nounit, fmt = 9995 )'GESDD', iinfo, m, n,
756 \$ jtype, lswork, ioldsd
757 info = abs( iinfo )
758 RETURN
759 END IF
760*
761* Do tests 1--4
762*
763 CALL zbdt01( m, n, 0, asav, lda, usav, ldu, ssav, e,
764 \$ vtsav, ldvt, work, rwork, result( 8 ) )
765 IF( m.NE.0 .AND. n.NE.0 ) THEN
766 CALL zunt01( 'Columns', mnmin, m, usav, ldu, work,
767 \$ lwork, rwork, result( 9 ) )
768 CALL zunt01( 'Rows', mnmin, n, vtsav, ldvt, work,
769 \$ lwork, rwork, result( 10 ) )
770 END IF
771 result( 11 ) = 0
772 DO 110 i = 1, mnmin - 1
773 IF( ssav( i ).LT.ssav( i+1 ) )
774 \$ result( 11 ) = ulpinv
775 IF( ssav( i ).LT.zero )
776 \$ result( 11 ) = ulpinv
777 110 CONTINUE
778 IF( mnmin.GE.1 ) THEN
779 IF( ssav( mnmin ).LT.zero )
780 \$ result( 11 ) = ulpinv
781 END IF
782*
783* Do partial SVDs, comparing to SSAV, USAV, and VTSAV
784*
785 result( 12 ) = zero
786 result( 13 ) = zero
787 result( 14 ) = zero
788 DO 130 ijq = 0, 2
789 jobq = cjob( ijq+1 )
790 CALL zlacpy( 'F', m, n, asav, lda, a, lda )
791 srnamt = 'ZGESDD'
792 CALL zgesdd( jobq, m, n, a, lda, s, u, ldu, vt, ldvt,
793 \$ work, lswork, rwork, iwork, iinfo )
794*
795* Compare U
796*
797 dif = zero
798 IF( m.GT.0 .AND. n.GT.0 ) THEN
799 IF( ijq.EQ.1 ) THEN
800 IF( m.GE.n ) THEN
801 CALL zunt03( 'C', m, mnmin, m, mnmin, usav,
802 \$ ldu, a, lda, work, lwork, rwork,
803 \$ dif, iinfo )
804 ELSE
805 CALL zunt03( 'C', m, mnmin, m, mnmin, usav,
806 \$ ldu, u, ldu, work, lwork, rwork,
807 \$ dif, iinfo )
808 END IF
809 ELSE IF( ijq.EQ.2 ) THEN
810 CALL zunt03( 'C', m, mnmin, m, mnmin, usav, ldu,
811 \$ u, ldu, work, lwork, rwork, dif,
812 \$ iinfo )
813 END IF
814 END IF
815 result( 12 ) = max( result( 12 ), dif )
816*
817* Compare VT
818*
819 dif = zero
820 IF( m.GT.0 .AND. n.GT.0 ) THEN
821 IF( ijq.EQ.1 ) THEN
822 IF( m.GE.n ) THEN
823 CALL zunt03( 'R', n, mnmin, n, mnmin, vtsav,
824 \$ ldvt, vt, ldvt, work, lwork,
825 \$ rwork, dif, iinfo )
826 ELSE
827 CALL zunt03( 'R', n, mnmin, n, mnmin, vtsav,
828 \$ ldvt, a, lda, work, lwork,
829 \$ rwork, dif, iinfo )
830 END IF
831 ELSE IF( ijq.EQ.2 ) THEN
832 CALL zunt03( 'R', n, mnmin, n, mnmin, vtsav,
833 \$ ldvt, vt, ldvt, work, lwork, rwork,
834 \$ dif, iinfo )
835 END IF
836 END IF
837 result( 13 ) = max( result( 13 ), dif )
838*
839* Compare S
840*
841 dif = zero
842 div = max( dble( mnmin )*ulp*s( 1 ),
843 \$ dlamch( 'Safe minimum' ) )
844 DO 120 i = 1, mnmin - 1
845 IF( ssav( i ).LT.ssav( i+1 ) )
846 \$ dif = ulpinv
847 IF( ssav( i ).LT.zero )
848 \$ dif = ulpinv
849 dif = max( dif, abs( ssav( i )-s( i ) ) / div )
850 120 CONTINUE
851 result( 14 ) = max( result( 14 ), dif )
852 130 CONTINUE
853*
854* Test ZGESVDQ
855* Note: ZGESVDQ only works for M >= N
856*
857 result( 36 ) = zero
858 result( 37 ) = zero
859 result( 38 ) = zero
860 result( 39 ) = zero
861*
862 IF( m.GE.n ) THEN
863 iwtmp = 2*mnmin*mnmin + 2*mnmin + max( m, n )
864 lswork = iwtmp + ( iwspc-1 )*( lwork-iwtmp ) / 3
865 lswork = min( lswork, lwork )
866 lswork = max( lswork, 1 )
867 IF( iwspc.EQ.4 )
868 \$ lswork = lwork
869*
870 CALL zlacpy( 'F', m, n, asav, lda, a, lda )
871 srnamt = 'ZGESVDQ'
872*
873 lrwork = max(2, m, 5*n)
874 liwork = max( n, 1 )
875 CALL zgesvdq( 'H', 'N', 'N', 'A', 'A',
876 \$ m, n, a, lda, ssav, usav, ldu,
877 \$ vtsav, ldvt, numrank, iwork, liwork,
878 \$ work, lwork, rwork, lrwork, iinfo )
879*
880 IF( iinfo.NE.0 ) THEN
881 WRITE( nounit, fmt = 9995 )'ZGESVDQ', iinfo, m, n,
882 \$ jtype, lswork, ioldsd
883 info = abs( iinfo )
884 RETURN
885 END IF
886*
887* Do tests 36--39
888*
889 CALL zbdt01( m, n, 0, asav, lda, usav, ldu, ssav, e,
890 \$ vtsav, ldvt, work, rwork, result( 36 ) )
891 IF( m.NE.0 .AND. n.NE.0 ) THEN
892 CALL zunt01( 'Columns', m, m, usav, ldu, work,
893 \$ lwork, rwork, result( 37 ) )
894 CALL zunt01( 'Rows', n, n, vtsav, ldvt, work,
895 \$ lwork, rwork, result( 38 ) )
896 END IF
897 result( 39 ) = zero
898 DO 199 i = 1, mnmin - 1
899 IF( ssav( i ).LT.ssav( i+1 ) )
900 \$ result( 39 ) = ulpinv
901 IF( ssav( i ).LT.zero )
902 \$ result( 39 ) = ulpinv
903 199 CONTINUE
904 IF( mnmin.GE.1 ) THEN
905 IF( ssav( mnmin ).LT.zero )
906 \$ result( 39 ) = ulpinv
907 END IF
908 END IF
909*
910* Test ZGESVJ
911* Note: ZGESVJ only works for M >= N
912*
913 result( 15 ) = zero
914 result( 16 ) = zero
915 result( 17 ) = zero
916 result( 18 ) = zero
917*
918 IF( m.GE.n ) THEN
919 iwtmp = 2*mnmin*mnmin + 2*mnmin + max( m, n )
920 lswork = iwtmp + ( iwspc-1 )*( lwork-iwtmp ) / 3
921 lswork = min( lswork, lwork )
922 lswork = max( lswork, 1 )
923 lrwork = max(6,n)
924 IF( iwspc.EQ.4 )
925 \$ lswork = lwork
926*
927 CALL zlacpy( 'F', m, n, asav, lda, usav, lda )
928 srnamt = 'ZGESVJ'
929 CALL zgesvj( 'G', 'U', 'V', m, n, usav, lda, ssav,
930 & 0, a, ldvt, work, lwork, rwork,
931 & lrwork, iinfo )
932*
933* ZGESVJ returns V not VH
934*
935 DO j=1,n
936 DO i=1,n
937 vtsav(j,i) = conjg(a(i,j))
938 END DO
939 END DO
940*
941 IF( iinfo.NE.0 ) THEN
942 WRITE( nounit, fmt = 9995 )'GESVJ', iinfo, m, n,
943 \$ jtype, lswork, ioldsd
944 info = abs( iinfo )
945 RETURN
946 END IF
947*
948* Do tests 15--18
949*
950 CALL zbdt01( m, n, 0, asav, lda, usav, ldu, ssav, e,
951 \$ vtsav, ldvt, work, rwork, result( 15 ) )
952 IF( m.NE.0 .AND. n.NE.0 ) THEN
953 CALL zunt01( 'Columns', m, m, usav, ldu, work,
954 \$ lwork, rwork, result( 16 ) )
955 CALL zunt01( 'Rows', n, n, vtsav, ldvt, work,
956 \$ lwork, rwork, result( 17 ) )
957 END IF
958 result( 18 ) = zero
959 DO 131 i = 1, mnmin - 1
960 IF( ssav( i ).LT.ssav( i+1 ) )
961 \$ result( 18 ) = ulpinv
962 IF( ssav( i ).LT.zero )
963 \$ result( 18 ) = ulpinv
964 131 CONTINUE
965 IF( mnmin.GE.1 ) THEN
966 IF( ssav( mnmin ).LT.zero )
967 \$ result( 18 ) = ulpinv
968 END IF
969 END IF
970*
971* Test ZGEJSV
972* Note: ZGEJSV only works for M >= N
973*
974 result( 19 ) = zero
975 result( 20 ) = zero
976 result( 21 ) = zero
977 result( 22 ) = zero
978 IF( m.GE.n ) THEN
979 iwtmp = 2*mnmin*mnmin + 2*mnmin + max( m, n )
980 lswork = iwtmp + ( iwspc-1 )*( lwork-iwtmp ) / 3
981 lswork = min( lswork, lwork )
982 lswork = max( lswork, 1 )
983 IF( iwspc.EQ.4 )
984 \$ lswork = lwork
985 lrwork = max( 7, n + 2*m)
986*
987 CALL zlacpy( 'F', m, n, asav, lda, vtsav, lda )
988 srnamt = 'ZGEJSV'
989 CALL zgejsv( 'G', 'U', 'V', 'R', 'N', 'N',
990 & m, n, vtsav, lda, ssav, usav, ldu, a, ldvt,
991 & work, lwork, rwork,
992 & lrwork, iwork, iinfo )
993*
994* ZGEJSV returns V not VH
995*
996 DO 133 j=1,n
997 DO 132 i=1,n
998 vtsav(j,i) = conjg(a(i,j))
999 132 END DO
1000 133 END DO
1001*
1002 IF( iinfo.NE.0 ) THEN
1003 WRITE( nounit, fmt = 9995 )'GEJSV', iinfo, m, n,
1004 \$ jtype, lswork, ioldsd
1005 info = abs( iinfo )
1006 RETURN
1007 END IF
1008*
1009* Do tests 19--22
1010*
1011 CALL zbdt01( m, n, 0, asav, lda, usav, ldu, ssav, e,
1012 \$ vtsav, ldvt, work, rwork, result( 19 ) )
1013 IF( m.NE.0 .AND. n.NE.0 ) THEN
1014 CALL zunt01( 'Columns', m, m, usav, ldu, work,
1015 \$ lwork, rwork, result( 20 ) )
1016 CALL zunt01( 'Rows', n, n, vtsav, ldvt, work,
1017 \$ lwork, rwork, result( 21 ) )
1018 END IF
1019 result( 22 ) = zero
1020 DO 134 i = 1, mnmin - 1
1021 IF( ssav( i ).LT.ssav( i+1 ) )
1022 \$ result( 22 ) = ulpinv
1023 IF( ssav( i ).LT.zero )
1024 \$ result( 22 ) = ulpinv
1025 134 CONTINUE
1026 IF( mnmin.GE.1 ) THEN
1027 IF( ssav( mnmin ).LT.zero )
1028 \$ result( 22 ) = ulpinv
1029 END IF
1030 END IF
1031*
1032* Test ZGESVDX
1033*
1034* Factorize A
1035*
1036 CALL zlacpy( 'F', m, n, asav, lda, a, lda )
1037 srnamt = 'ZGESVDX'
1038 CALL zgesvdx( 'V', 'V', 'A', m, n, a, lda,
1039 \$ vl, vu, il, iu, ns, ssav, usav, ldu,
1040 \$ vtsav, ldvt, work, lwork, rwork,
1041 \$ iwork, iinfo )
1042 IF( iinfo.NE.0 ) THEN
1043 WRITE( nounit, fmt = 9995 )'GESVDX', iinfo, m, n,
1044 \$ jtype, lswork, ioldsd
1045 info = abs( iinfo )
1046 RETURN
1047 END IF
1048*
1049* Do tests 1--4
1050*
1051 result( 23 ) = zero
1052 result( 24 ) = zero
1053 result( 25 ) = zero
1054 CALL zbdt01( m, n, 0, asav, lda, usav, ldu, ssav, e,
1055 \$ vtsav, ldvt, work, rwork, result( 23 ) )
1056 IF( m.NE.0 .AND. n.NE.0 ) THEN
1057 CALL zunt01( 'Columns', mnmin, m, usav, ldu, work,
1058 \$ lwork, rwork, result( 24 ) )
1059 CALL zunt01( 'Rows', mnmin, n, vtsav, ldvt, work,
1060 \$ lwork, rwork, result( 25 ) )
1061 END IF
1062 result( 26 ) = zero
1063 DO 140 i = 1, mnmin - 1
1064 IF( ssav( i ).LT.ssav( i+1 ) )
1065 \$ result( 26 ) = ulpinv
1066 IF( ssav( i ).LT.zero )
1067 \$ result( 26 ) = ulpinv
1068 140 CONTINUE
1069 IF( mnmin.GE.1 ) THEN
1070 IF( ssav( mnmin ).LT.zero )
1071 \$ result( 26 ) = ulpinv
1072 END IF
1073*
1074* Do partial SVDs, comparing to SSAV, USAV, and VTSAV
1075*
1076 result( 27 ) = zero
1077 result( 28 ) = zero
1078 result( 29 ) = zero
1079 DO 170 iju = 0, 1
1080 DO 160 ijvt = 0, 1
1081 IF( ( iju.EQ.0 .AND. ijvt.EQ.0 ) .OR.
1082 \$ ( iju.EQ.1 .AND. ijvt.EQ.1 ) ) GO TO 160
1083 jobu = cjobv( iju+1 )
1084 jobvt = cjobv( ijvt+1 )
1085 range = cjobr( 1 )
1086 CALL zlacpy( 'F', m, n, asav, lda, a, lda )
1087 srnamt = 'ZGESVDX'
1088 CALL zgesvdx( jobu, jobvt, 'A', m, n, a, lda,
1089 \$ vl, vu, il, iu, ns, ssav, u, ldu,
1090 \$ vt, ldvt, work, lwork, rwork,
1091 \$ iwork, iinfo )
1092*
1093* Compare U
1094*
1095 dif = zero
1096 IF( m.GT.0 .AND. n.GT.0 ) THEN
1097 IF( iju.EQ.1 ) THEN
1098 CALL zunt03( 'C', m, mnmin, m, mnmin, usav,
1099 \$ ldu, u, ldu, work, lwork, rwork,
1100 \$ dif, iinfo )
1101 END IF
1102 END IF
1103 result( 27 ) = max( result( 27 ), dif )
1104*
1105* Compare VT
1106*
1107 dif = zero
1108 IF( m.GT.0 .AND. n.GT.0 ) THEN
1109 IF( ijvt.EQ.1 ) THEN
1110 CALL zunt03( 'R', n, mnmin, n, mnmin, vtsav,
1111 \$ ldvt, vt, ldvt, work, lwork,
1112 \$ rwork, dif, iinfo )
1113 END IF
1114 END IF
1115 result( 28 ) = max( result( 28 ), dif )
1116*
1117* Compare S
1118*
1119 dif = zero
1120 div = max( dble( mnmin )*ulp*s( 1 ),
1121 \$ dlamch( 'Safe minimum' ) )
1122 DO 150 i = 1, mnmin - 1
1123 IF( ssav( i ).LT.ssav( i+1 ) )
1124 \$ dif = ulpinv
1125 IF( ssav( i ).LT.zero )
1126 \$ dif = ulpinv
1127 dif = max( dif, abs( ssav( i )-s( i ) ) / div )
1128 150 CONTINUE
1129 result( 29) = max( result( 29 ), dif )
1130 160 CONTINUE
1131 170 CONTINUE
1132*
1133* Do tests 8--10
1134*
1135 DO 180 i = 1, 4
1136 iseed2( i ) = iseed( i )
1137 180 CONTINUE
1138 IF( mnmin.LE.1 ) THEN
1139 il = 1
1140 iu = max( 1, mnmin )
1141 ELSE
1142 il = 1 + int( ( mnmin-1 )*dlarnd( 1, iseed2 ) )
1143 iu = 1 + int( ( mnmin-1 )*dlarnd( 1, iseed2 ) )
1144 IF( iu.LT.il ) THEN
1145 itemp = iu
1146 iu = il
1147 il = itemp
1148 END IF
1149 END IF
1150 CALL zlacpy( 'F', m, n, asav, lda, a, lda )
1151 srnamt = 'ZGESVDX'
1152 CALL zgesvdx( 'V', 'V', 'I', m, n, a, lda,
1153 \$ vl, vu, il, iu, nsi, s, u, ldu,
1154 \$ vt, ldvt, work, lwork, rwork,
1155 \$ iwork, iinfo )
1156 IF( iinfo.NE.0 ) THEN
1157 WRITE( nounit, fmt = 9995 )'GESVDX', iinfo, m, n,
1158 \$ jtype, lswork, ioldsd
1159 info = abs( iinfo )
1160 RETURN
1161 END IF
1162*
1163 result( 30 ) = zero
1164 result( 31 ) = zero
1165 result( 32 ) = zero
1166 CALL zbdt05( m, n, asav, lda, s, nsi, u, ldu,
1167 \$ vt, ldvt, work, result( 30 ) )
1168 IF( m.NE.0 .AND. n.NE.0 ) THEN
1169 CALL zunt01( 'Columns', m, nsi, u, ldu, work,
1170 \$ lwork, rwork, result( 31 ) )
1171 CALL zunt01( 'Rows', nsi, n, vt, ldvt, work,
1172 \$ lwork, rwork, result( 32 ) )
1173 END IF
1174*
1175* Do tests 11--13
1176*
1177 IF( mnmin.GT.0 .AND. nsi.GT.1 ) THEN
1178 IF( il.NE.1 ) THEN
1179 vu = ssav( il ) +
1180 \$ max( half*abs( ssav( il )-ssav( il-1 ) ),
1181 \$ ulp*anorm, two*rtunfl )
1182 ELSE
1183 vu = ssav( 1 ) +
1184 \$ max( half*abs( ssav( ns )-ssav( 1 ) ),
1185 \$ ulp*anorm, two*rtunfl )
1186 END IF
1187 IF( iu.NE.ns ) THEN
1188 vl = ssav( iu ) - max( ulp*anorm, two*rtunfl,
1189 \$ half*abs( ssav( iu+1 )-ssav( iu ) ) )
1190 ELSE
1191 vl = ssav( ns ) - max( ulp*anorm, two*rtunfl,
1192 \$ half*abs( ssav( ns )-ssav( 1 ) ) )
1193 END IF
1194 vl = max( vl,zero )
1195 vu = max( vu,zero )
1196 IF( vl.GE.vu ) vu = max( vu*2, vu+vl+half )
1197 ELSE
1198 vl = zero
1199 vu = one
1200 END IF
1201 CALL zlacpy( 'F', m, n, asav, lda, a, lda )
1202 srnamt = 'ZGESVDX'
1203 CALL zgesvdx( 'V', 'V', 'V', m, n, a, lda,
1204 \$ vl, vu, il, iu, nsv, s, u, ldu,
1205 \$ vt, ldvt, work, lwork, rwork,
1206 \$ iwork, iinfo )
1207 IF( iinfo.NE.0 ) THEN
1208 WRITE( nounit, fmt = 9995 )'GESVDX', iinfo, m, n,
1209 \$ jtype, lswork, ioldsd
1210 info = abs( iinfo )
1211 RETURN
1212 END IF
1213*
1214 result( 33 ) = zero
1215 result( 34 ) = zero
1216 result( 35 ) = zero
1217 CALL zbdt05( m, n, asav, lda, s, nsv, u, ldu,
1218 \$ vt, ldvt, work, result( 33 ) )
1219 IF( m.NE.0 .AND. n.NE.0 ) THEN
1220 CALL zunt01( 'Columns', m, nsv, u, ldu, work,
1221 \$ lwork, rwork, result( 34 ) )
1222 CALL zunt01( 'Rows', nsv, n, vt, ldvt, work,
1223 \$ lwork, rwork, result( 35 ) )
1224 END IF
1225*
1226* End of Loop -- Check for RESULT(j) > THRESH
1227*
1228 ntest = 0
1229 nfail = 0
1230 DO 190 j = 1, 39
1231 IF( result( j ).GE.zero )
1232 \$ ntest = ntest + 1
1233 IF( result( j ).GE.thresh )
1234 \$ nfail = nfail + 1
1235 190 CONTINUE
1236*
1237 IF( nfail.GT.0 )
1238 \$ ntestf = ntestf + 1
1239 IF( ntestf.EQ.1 ) THEN
1240 WRITE( nounit, fmt = 9999 )
1241 WRITE( nounit, fmt = 9998 )thresh
1242 ntestf = 2
1243 END IF
1244*
1245 DO 200 j = 1, 39
1246 IF( result( j ).GE.thresh ) THEN
1247 WRITE( nounit, fmt = 9997 )m, n, jtype, iwspc,
1248 \$ ioldsd, j, result( j )
1249 END IF
1250 200 CONTINUE
1251*
1252 nerrs = nerrs + nfail
1253 ntestt = ntestt + ntest
1254*
1255 210 CONTINUE
1256*
1257 220 CONTINUE
1258 230 CONTINUE
1259*
1260* Summary
1261*
1262 CALL alasvm( 'ZBD', nounit, nerrs, ntestt, 0 )
1263*
1264 9999 FORMAT( ' SVD -- Complex Singular Value Decomposition Driver ',
1265 \$ / ' Matrix types (see ZDRVBD for details):',
1266 \$ / / ' 1 = Zero matrix', / ' 2 = Identity matrix',
1267 \$ / ' 3 = Evenly spaced singular values near 1',
1268 \$ / ' 4 = Evenly spaced singular values near underflow',
1269 \$ / ' 5 = Evenly spaced singular values near overflow',
1270 \$ / / ' Tests performed: ( A is dense, U and V are unitary,',
1271 \$ / 19x, ' S is an array, and Upartial, VTpartial, and',
1272 \$ / 19x, ' Spartial are partially computed U, VT and S),', / )
1273 9998 FORMAT( ' Tests performed with Test Threshold = ', f8.2,
1274 \$ / ' ZGESVD: ', /
1275 \$ ' 1 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ',
1276 \$ / ' 2 = | I - U**T U | / ( M ulp ) ',
1277 \$ / ' 3 = | I - VT VT**T | / ( N ulp ) ',
1278 \$ / ' 4 = 0 if S contains min(M,N) nonnegative values in',
1279 \$ ' decreasing order, else 1/ulp',
1280 \$ / ' 5 = | U - Upartial | / ( M ulp )',
1281 \$ / ' 6 = | VT - VTpartial | / ( N ulp )',
1282 \$ / ' 7 = | S - Spartial | / ( min(M,N) ulp |S| )',
1283 \$ / ' ZGESDD: ', /
1284 \$ ' 8 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ',
1285 \$ / ' 9 = | I - U**T U | / ( M ulp ) ',
1286 \$ / '10 = | I - VT VT**T | / ( N ulp ) ',
1287 \$ / '11 = 0 if S contains min(M,N) nonnegative values in',
1288 \$ ' decreasing order, else 1/ulp',
1289 \$ / '12 = | U - Upartial | / ( M ulp )',
1290 \$ / '13 = | VT - VTpartial | / ( N ulp )',
1291 \$ / '14 = | S - Spartial | / ( min(M,N) ulp |S| )',
1292 \$ / ' ZGESVJ: ', /
1293 \$ / '15 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ',
1294 \$ / '16 = | I - U**T U | / ( M ulp ) ',
1295 \$ / '17 = | I - VT VT**T | / ( N ulp ) ',
1296 \$ / '18 = 0 if S contains min(M,N) nonnegative values in',
1297 \$ ' decreasing order, else 1/ulp',
1298 \$ / ' ZGESJV: ', /
1299 \$ / '19 = | A - U diag(S) VT | / ( |A| max(M,N) ulp )',
1300 \$ / '20 = | I - U**T U | / ( M ulp ) ',
1301 \$ / '21 = | I - VT VT**T | / ( N ulp ) ',
1302 \$ / '22 = 0 if S contains min(M,N) nonnegative values in',
1303 \$ ' decreasing order, else 1/ulp',
1304 \$ / ' ZGESVDX(V,V,A): ', /
1305 \$ '23 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ',
1306 \$ / '24 = | I - U**T U | / ( M ulp ) ',
1307 \$ / '25 = | I - VT VT**T | / ( N ulp ) ',
1308 \$ / '26 = 0 if S contains min(M,N) nonnegative values in',
1309 \$ ' decreasing order, else 1/ulp',
1310 \$ / '27 = | U - Upartial | / ( M ulp )',
1311 \$ / '28 = | VT - VTpartial | / ( N ulp )',
1312 \$ / '29 = | S - Spartial | / ( min(M,N) ulp |S| )',
1313 \$ / ' ZGESVDX(V,V,I): ',
1314 \$ / '30 = | U**T A VT**T - diag(S) | / ( |A| max(M,N) ulp )',
1315 \$ / '31 = | I - U**T U | / ( M ulp ) ',
1316 \$ / '32 = | I - VT VT**T | / ( N ulp ) ',
1317 \$ / ' ZGESVDX(V,V,V) ',
1318 \$ / '33 = | U**T A VT**T - diag(S) | / ( |A| max(M,N) ulp )',
1319 \$ / '34 = | I - U**T U | / ( M ulp ) ',
1320 \$ / '35 = | I - VT VT**T | / ( N ulp ) ',
1321 \$ ' ZGESVDQ(H,N,N,A,A',
1322 \$ / '36 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ',
1323 \$ / '37 = | I - U**T U | / ( M ulp ) ',
1324 \$ / '38 = | I - VT VT**T | / ( N ulp ) ',
1325 \$ / '39 = 0 if S contains min(M,N) nonnegative values in',
1326 \$ ' decreasing order, else 1/ulp',
1327 \$ / / )
1328 9997 FORMAT( ' M=', i5, ', N=', i5, ', type ', i1, ', IWS=', i1,
1329 \$ ', seed=', 4( i4, ',' ), ' test(', i2, ')=', g11.4 )
1330 9996 FORMAT( ' ZDRVBD: ', a, ' returned INFO=', i6, '.', / 9x, 'M=',
1331 \$ i6, ', N=', i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ),
1332 \$ i5, ')' )
1333 9995 FORMAT( ' ZDRVBD: ', a, ' returned INFO=', i6, '.', / 9x, 'M=',
1334 \$ i6, ', N=', i6, ', JTYPE=', i6, ', LSWORK=', i6, / 9x,
1335 \$ 'ISEED=(', 3( i5, ',' ), i5, ')' )
1336*
1337 RETURN
1338*
1339* End of ZDRVBD
1340*
1341 END
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgejsv(joba, jobu, jobv, jobr, jobt, jobp, m, n, a, lda, sva, u, ldu, v, ldv, cwork, lwork, rwork, lrwork, iwork, info)
ZGEJSV
Definition zgejsv.f:569
subroutine zgesdd(jobz, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork, info)
ZGESDD
Definition zgesdd.f:221
subroutine zgesvd(jobu, jobvt, m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork, rwork, info)
ZGESVD computes the singular value decomposition (SVD) for GE matrices
Definition zgesvd.f:214
subroutine zgesvdq(joba, jobp, jobr, jobu, jobv, m, n, a, lda, s, u, ldu, v, ldv, numrank, iwork, liwork, cwork, lcwork, rwork, lrwork, info)
ZGESVDQ computes the singular value decomposition (SVD) with a QR-Preconditioned QR SVD Method for GE...
Definition zgesvdq.f:413
subroutine zgesvdx(jobu, jobvt, range, m, n, a, lda, vl, vu, il, iu, ns, s, u, ldu, vt, ldvt, work, lwork, rwork, iwork, info)
ZGESVDX computes the singular value decomposition (SVD) for GE matrices
Definition zgesvdx.f:270
subroutine zgesvj(joba, jobu, jobv, m, n, a, lda, sva, mv, v, ldv, cwork, lwork, rwork, lrwork, info)
ZGESVJ
Definition zgesvj.f:351
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:106
subroutine zbdt01(m, n, kd, a, lda, q, ldq, d, e, pt, ldpt, work, rwork, resid)
ZBDT01
Definition zbdt01.f:147
subroutine zbdt05(m, n, a, lda, s, ns, u, ldu, vt, ldvt, work, resid)
ZBDT05
Definition zbdt05.f:125
subroutine zdrvbd(nsizes, mm, nn, ntypes, dotype, iseed, thresh, a, lda, u, ldu, vt, ldvt, asav, usav, vtsav, s, ssav, e, work, lwork, rwork, iwork, nounit, info)
ZDRVBD
Definition zdrvbd.f:401
subroutine zlatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
ZLATMS
Definition zlatms.f:332
subroutine zunt01(rowcol, m, n, u, ldu, work, lwork, rwork, resid)
ZUNT01
Definition zunt01.f:126
subroutine zunt03(rc, mu, mv, n, k, u, ldu, v, ldv, work, lwork, rwork, result, info)
ZUNT03
Definition zunt03.f:162