LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zbdt01 | ( | integer | m, |
integer | n, | ||
integer | kd, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( ldq, * ) | q, | ||
integer | ldq, | ||
double precision, dimension( * ) | d, | ||
double precision, dimension( * ) | e, | ||
complex*16, dimension( ldpt, * ) | pt, | ||
integer | ldpt, | ||
complex*16, dimension( * ) | work, | ||
double precision, dimension( * ) | rwork, | ||
double precision | resid ) |
ZBDT01
!> !> ZBDT01 reconstructs a general matrix A from its bidiagonal form !> A = Q * B * P**H !> where Q (m by min(m,n)) and P**H (min(m,n) by n) are unitary !> matrices and B is bidiagonal. !> !> The test ratio to test the reduction is !> RESID = norm(A - Q * B * P**H) / ( n * norm(A) * EPS ) !> where EPS is the machine precision. !>
[in] | M | !> M is INTEGER !> The number of rows of the matrices A and Q. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrices A and P**H. !> |
[in] | KD | !> KD is INTEGER !> If KD = 0, B is diagonal and the array E is not referenced. !> If KD = 1, the reduction was performed by xGEBRD; B is upper !> bidiagonal if M >= N, and lower bidiagonal if M < N. !> If KD = -1, the reduction was performed by xGBBRD; B is !> always upper bidiagonal. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> The m by n matrix A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[in] | Q | !> Q is COMPLEX*16 array, dimension (LDQ,N) !> The m by min(m,n) unitary matrix Q in the reduction !> A = Q * B * P**H. !> |
[in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,M). !> |
[in] | D | !> D is DOUBLE PRECISION array, dimension (min(M,N)) !> The diagonal elements of the bidiagonal matrix B. !> |
[in] | E | !> E is DOUBLE PRECISION array, dimension (min(M,N)-1) !> The superdiagonal elements of the bidiagonal matrix B if !> m >= n, or the subdiagonal elements of B if m < n. !> |
[in] | PT | !> PT is COMPLEX*16 array, dimension (LDPT,N) !> The min(m,n) by n unitary matrix P**H in the reduction !> A = Q * B * P**H. !> |
[in] | LDPT | !> LDPT is INTEGER !> The leading dimension of the array PT. !> LDPT >= max(1,min(M,N)). !> |
[out] | WORK | !> WORK is COMPLEX*16 array, dimension (M+N) !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (M) !> |
[out] | RESID | !> RESID is DOUBLE PRECISION !> The test ratio: !> norm(A - Q * B * P**H) / ( n * norm(A) * EPS ) !> |
Definition at line 145 of file zbdt01.f.