LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dqrt11()

double precision function dqrt11 ( integer m,
integer k,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( lwork ) work,
integer lwork )

DQRT11

Purpose:
!>
!> DQRT11 computes the test ratio
!>
!>       || Q'*Q - I || / (eps * m)
!>
!> where the orthogonal matrix Q is represented as a product of
!> elementary transformations.  Each transformation has the form
!>
!>    H(k) = I - tau(k) v(k) v(k)'
!>
!> where tau(k) is stored in TAU(k) and v(k) is an m-vector of the form
!> [ 0 ... 0 1 x(k) ]', where x(k) is a vector of length m-k stored
!> in A(k+1:m,k).
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.
!> 
[in]K
!>          K is INTEGER
!>          The number of columns of A whose subdiagonal entries
!>          contain information about orthogonal transformations.
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension (LDA,K)
!>          The (possibly partial) output of a QR reduction routine.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.
!> 
[in]TAU
!>          TAU is DOUBLE PRECISION array, dimension (K)
!>          The scaling factors tau for the elementary transformations as
!>          computed by the QR factorization routine.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (LWORK)
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.  LWORK >= M*M + M.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 97 of file dqrt11.f.

98*
99* -- LAPACK test routine --
100* -- LAPACK is a software package provided by Univ. of Tennessee, --
101* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
102*
103* .. Scalar Arguments ..
104 INTEGER K, LDA, LWORK, M
105* ..
106* .. Array Arguments ..
107 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( LWORK )
108* ..
109*
110* =====================================================================
111*
112* .. Parameters ..
113 DOUBLE PRECISION ZERO, ONE
114 parameter( zero = 0.0d0, one = 1.0d0 )
115* ..
116* .. Local Scalars ..
117 INTEGER INFO, J
118* ..
119* .. External Functions ..
120 DOUBLE PRECISION DLAMCH, DLANGE
121 EXTERNAL dlamch, dlange
122* ..
123* .. External Subroutines ..
124 EXTERNAL dlaset, dorm2r, xerbla
125* ..
126* .. Intrinsic Functions ..
127 INTRINSIC dble
128* ..
129* .. Local Arrays ..
130 DOUBLE PRECISION RDUMMY( 1 )
131* ..
132* .. Executable Statements ..
133*
134 dqrt11 = zero
135*
136* Test for sufficient workspace
137*
138 IF( lwork.LT.m*m+m ) THEN
139 CALL xerbla( 'DQRT11', 7 )
140 RETURN
141 END IF
142*
143* Quick return if possible
144*
145 IF( m.LE.0 )
146 $ RETURN
147*
148 CALL dlaset( 'Full', m, m, zero, one, work, m )
149*
150* Form Q
151*
152 CALL dorm2r( 'Left', 'No transpose', m, m, k, a, lda, tau, work,
153 $ m, work( m*m+1 ), info )
154*
155* Form Q'*Q
156*
157 CALL dorm2r( 'Left', 'Transpose', m, m, k, a, lda, tau, work, m,
158 $ work( m*m+1 ), info )
159*
160 DO j = 1, m
161 work( ( j-1 )*m+j ) = work( ( j-1 )*m+j ) - one
162 END DO
163*
164 dqrt11 = dlange( 'One-norm', m, m, work, m, rdummy ) /
165 $ ( dble( m )*dlamch( 'Epsilon' ) )
166*
167 RETURN
168*
169* End of DQRT11
170*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
double precision function dqrt11(m, k, a, lda, tau, work, lwork)
DQRT11
Definition dqrt11.f:98
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:112
subroutine dlaset(uplo, m, n, alpha, beta, a, lda)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition dlaset.f:108
subroutine dorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work, info)
DORM2R multiplies a general matrix by the orthogonal matrix from a QR factorization determined by sge...
Definition dorm2r.f:156
Here is the call graph for this function:
Here is the caller graph for this function: