LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zerrhe()

subroutine zerrhe ( character*3  path,
integer  nunit 
)

ZERRHEX

Purpose:
 ZERRHE tests the error exits for the COMPLEX*16 routines
 for Hermitian indefinite matrices.

 Note that this file is used only when the XBLAS are available,
 otherwise zerrhe.f defines this subroutine.
Parameters
[in]PATH
          PATH is CHARACTER*3
          The LAPACK path name for the routines to be tested.
[in]NUNIT
          NUNIT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 57 of file zerrhex.f.

58*
59* -- LAPACK test routine --
60* -- LAPACK is a software package provided by Univ. of Tennessee, --
61* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
62*
63* .. Scalar Arguments ..
64 CHARACTER*3 PATH
65 INTEGER NUNIT
66* ..
67*
68* =====================================================================
69*
70*
71* .. Parameters ..
72 INTEGER NMAX
73 parameter( nmax = 4 )
74* ..
75* .. Local Scalars ..
76 CHARACTER EQ
77 CHARACTER*2 C2
78 INTEGER I, INFO, J, N_ERR_BNDS, NPARAMS
79 DOUBLE PRECISION ANRM, RCOND, BERR
80* ..
81* .. Local Arrays ..
82 INTEGER IP( NMAX )
83 DOUBLE PRECISION R( NMAX ), R1( NMAX ), R2( NMAX ),
84 $ S( NMAX ), ERR_BNDS_N( NMAX, 3 ),
85 $ ERR_BNDS_C( NMAX, 3 ), PARAMS( 1 )
86 COMPLEX*16 A( NMAX, NMAX ), AF( NMAX, NMAX ), B( NMAX ),
87 $ E( NMAX ), W( 2*NMAX ), X( NMAX )
88* ..
89* .. External Functions ..
90 LOGICAL LSAMEN
91 EXTERNAL lsamen
92* ..
93* .. External Subroutines ..
100* ..
101* .. Scalars in Common ..
102 LOGICAL LERR, OK
103 CHARACTER*32 SRNAMT
104 INTEGER INFOT, NOUT
105* ..
106* .. Common blocks ..
107 COMMON / infoc / infot, nout, ok, lerr
108 COMMON / srnamc / srnamt
109* ..
110* .. Intrinsic Functions ..
111 INTRINSIC dble, dcmplx
112* ..
113* .. Executable Statements ..
114*
115 nout = nunit
116 WRITE( nout, fmt = * )
117 c2 = path( 2: 3 )
118*
119* Set the variables to innocuous values.
120*
121 DO 20 j = 1, nmax
122 DO 10 i = 1, nmax
123 a( i, j ) = dcmplx( 1.d0 / dble( i+j ),
124 $ -1.d0 / dble( i+j ) )
125 af( i, j ) = dcmplx( 1.d0 / dble( i+j ),
126 $ -1.d0 / dble( i+j ) )
127 10 CONTINUE
128 b( j ) = 0.d0
129 e( j ) = 0.d0
130 r1( j ) = 0.d0
131 r2( j ) = 0.d0
132 w( j ) = 0.d0
133 x( j ) = 0.d0
134 s( j ) = 0.d0
135 ip( j ) = j
136 20 CONTINUE
137 anrm = 1.0d0
138 ok = .true.
139*
140* Test error exits of the routines that use factorization
141* of a Hermitian indefinite matrix with partial
142* (Bunch-Kaufman) diagonal pivoting method.
143*
144 IF( lsamen( 2, c2, 'HE' ) ) THEN
145*
146* ZHETRF
147*
148 srnamt = 'ZHETRF'
149 infot = 1
150 CALL zhetrf( '/', 0, a, 1, ip, w, 1, info )
151 CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
152 infot = 2
153 CALL zhetrf( 'U', -1, a, 1, ip, w, 1, info )
154 CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
155 infot = 4
156 CALL zhetrf( 'U', 2, a, 1, ip, w, 4, info )
157 CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
158 infot = 7
159 CALL zhetrf( 'U', 0, a, 1, ip, w, 0, info )
160 CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
161 infot = 7
162 CALL zhetrf( 'U', 0, a, 1, ip, w, -2, info )
163 CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
164*
165* ZHETF2
166*
167 srnamt = 'ZHETF2'
168 infot = 1
169 CALL zhetf2( '/', 0, a, 1, ip, info )
170 CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
171 infot = 2
172 CALL zhetf2( 'U', -1, a, 1, ip, info )
173 CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
174 infot = 4
175 CALL zhetf2( 'U', 2, a, 1, ip, info )
176 CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
177*
178* ZHETRI
179*
180 srnamt = 'ZHETRI'
181 infot = 1
182 CALL zhetri( '/', 0, a, 1, ip, w, info )
183 CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
184 infot = 2
185 CALL zhetri( 'U', -1, a, 1, ip, w, info )
186 CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
187 infot = 4
188 CALL zhetri( 'U', 2, a, 1, ip, w, info )
189 CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
190*
191* ZHETRI2
192*
193 srnamt = 'ZHETRI2'
194 infot = 1
195 CALL zhetri2( '/', 0, a, 1, ip, w, 1, info )
196 CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
197 infot = 2
198 CALL zhetri2( 'U', -1, a, 1, ip, w, 1, info )
199 CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
200 infot = 4
201 CALL zhetri2( 'U', 2, a, 1, ip, w, 1, info )
202 CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
203*
204* ZHETRI2X
205*
206 srnamt = 'ZHETRI2X'
207 infot = 1
208 CALL zhetri2x( '/', 0, a, 1, ip, w, 1, info )
209 CALL chkxer( 'ZHETRI2X', infot, nout, lerr, ok )
210 infot = 2
211 CALL zhetri2x( 'U', -1, a, 1, ip, w, 1, info )
212 CALL chkxer( 'ZHETRI2X', infot, nout, lerr, ok )
213 infot = 4
214 CALL zhetri2x( 'U', 2, a, 1, ip, w, 1, info )
215 CALL chkxer( 'ZHETRI2X', infot, nout, lerr, ok )
216*
217* ZHETRS
218*
219 srnamt = 'ZHETRS'
220 infot = 1
221 CALL zhetrs( '/', 0, 0, a, 1, ip, b, 1, info )
222 CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
223 infot = 2
224 CALL zhetrs( 'U', -1, 0, a, 1, ip, b, 1, info )
225 CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
226 infot = 3
227 CALL zhetrs( 'U', 0, -1, a, 1, ip, b, 1, info )
228 CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
229 infot = 5
230 CALL zhetrs( 'U', 2, 1, a, 1, ip, b, 2, info )
231 CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
232 infot = 8
233 CALL zhetrs( 'U', 2, 1, a, 2, ip, b, 1, info )
234 CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
235*
236* ZHERFS
237*
238 srnamt = 'ZHERFS'
239 infot = 1
240 CALL zherfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
241 $ r, info )
242 CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
243 infot = 2
244 CALL zherfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
245 $ w, r, info )
246 CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
247 infot = 3
248 CALL zherfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
249 $ w, r, info )
250 CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
251 infot = 5
252 CALL zherfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
253 $ r, info )
254 CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
255 infot = 7
256 CALL zherfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
257 $ r, info )
258 CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
259 infot = 10
260 CALL zherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
261 $ r, info )
262 CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
263 infot = 12
264 CALL zherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
265 $ r, info )
266 CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
267*
268* ZHERFSX
269*
270 n_err_bnds = 3
271 nparams = 0
272 srnamt = 'ZHERFSX'
273 infot = 1
274 CALL zherfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
275 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
276 $ params, w, r, info )
277 CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
278 infot = 2
279 CALL zherfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
280 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
281 $ params, w, r, info )
282 CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
283 eq = 'N'
284 infot = 3
285 CALL zherfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
286 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
287 $ params, w, r, info )
288 CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
289 infot = 4
290 CALL zherfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
291 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
292 $ params, w, r, info )
293 CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
294 infot = 6
295 CALL zherfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
296 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
297 $ params, w, r, info )
298 CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
299 infot = 8
300 CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
301 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
302 $ params, w, r, info )
303 CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
304 infot = 12
305 CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
306 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
307 $ params, w, r, info )
308 CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
309 infot = 14
310 CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
311 $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
312 $ params, w, r, info )
313 CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
314*
315* ZHECON
316*
317 srnamt = 'ZHECON'
318 infot = 1
319 CALL zhecon( '/', 0, a, 1, ip, anrm, rcond, w, info )
320 CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
321 infot = 2
322 CALL zhecon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
323 CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
324 infot = 4
325 CALL zhecon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
326 CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
327 infot = 6
328 CALL zhecon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
329 CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
330*
331 ELSE IF( lsamen( 2, c2, 'HR' ) ) THEN
332*
333* Test error exits of the routines that use factorization
334* of a Hermitian indefinite matrix with rook
335* (bounded Bunch-Kaufman) diagonal pivoting method.
336*
337* ZHETRF_ROOK
338*
339 srnamt = 'ZHETRF_ROOK'
340 infot = 1
341 CALL zhetrf_rook( '/', 0, a, 1, ip, w, 1, info )
342 CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
343 infot = 2
344 CALL zhetrf_rook( 'U', -1, a, 1, ip, w, 1, info )
345 CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
346 infot = 4
347 CALL zhetrf_rook( 'U', 2, a, 1, ip, w, 4, info )
348 CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
349 infot = 7
350 CALL zhetrf_rook( 'U', 0, a, 1, ip, w, 0, info )
351 CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
352 infot = 7
353 CALL zhetrf_rook( 'U', 0, a, 1, ip, w, -2, info )
354 CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
355*
356* ZHETF2_ROOK
357*
358 srnamt = 'ZHETF2_ROOK'
359 infot = 1
360 CALL zhetf2_rook( '/', 0, a, 1, ip, info )
361 CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
362 infot = 2
363 CALL zhetf2_rook( 'U', -1, a, 1, ip, info )
364 CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
365 infot = 4
366 CALL zhetf2_rook( 'U', 2, a, 1, ip, info )
367 CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
368*
369* ZHETRI_ROOK
370*
371 srnamt = 'ZHETRI_ROOK'
372 infot = 1
373 CALL zhetri_rook( '/', 0, a, 1, ip, w, info )
374 CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
375 infot = 2
376 CALL zhetri_rook( 'U', -1, a, 1, ip, w, info )
377 CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
378 infot = 4
379 CALL zhetri_rook( 'U', 2, a, 1, ip, w, info )
380 CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
381*
382* ZHETRS_ROOK
383*
384 srnamt = 'ZHETRS_ROOK'
385 infot = 1
386 CALL zhetrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
387 CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
388 infot = 2
389 CALL zhetrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
390 CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
391 infot = 3
392 CALL zhetrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
393 CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
394 infot = 5
395 CALL zhetrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
396 CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
397 infot = 8
398 CALL zhetrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
399 CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
400*
401* ZHECON_ROOK
402*
403 srnamt = 'ZHECON_ROOK'
404 infot = 1
405 CALL zhecon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
406 CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
407 infot = 2
408 CALL zhecon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
409 CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
410 infot = 4
411 CALL zhecon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
412 CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
413 infot = 6
414 CALL zhecon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
415 CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
416*
417 ELSE IF( lsamen( 2, c2, 'HK' ) ) THEN
418*
419* Test error exits of the routines that use factorization
420* of a symmetric indefinite matrix with rook
421* (bounded Bunch-Kaufman) pivoting with the new storage
422* format for factors L ( or U) and D.
423*
424* L (or U) is stored in A, diagonal of D is stored on the
425* diagonal of A, subdiagonal of D is stored in a separate array E.
426*
427* ZHETRF_RK
428*
429 srnamt = 'ZHETRF_RK'
430 infot = 1
431 CALL zhetrf_rk( '/', 0, a, 1, e, ip, w, 1, info )
432 CALL chkxer( 'ZHETRF_RK', infot, nout, lerr, ok )
433 infot = 2
434 CALL zhetrf_rk( 'U', -1, a, 1, e, ip, w, 1, info )
435 CALL chkxer( 'ZHETRF_RK', infot, nout, lerr, ok )
436 infot = 4
437 CALL zhetrf_rk( 'U', 2, a, 1, e, ip, w, 4, info )
438 CALL chkxer( 'ZHETRF_RK', infot, nout, lerr, ok )
439 infot = 8
440 CALL zhetrf_rk( 'U', 0, a, 1, e, ip, w, 0, info )
441 CALL chkxer( 'ZHETRF_RK', infot, nout, lerr, ok )
442 infot = 8
443 CALL zhetrf_rk( 'U', 0, a, 1, e, ip, w, -2, info )
444 CALL chkxer( 'ZHETRF_RK', infot, nout, lerr, ok )
445*
446* ZHETF2_RK
447*
448 srnamt = 'ZHETF2_RK'
449 infot = 1
450 CALL zhetf2_rk( '/', 0, a, 1, e, ip, info )
451 CALL chkxer( 'ZHETF2_RK', infot, nout, lerr, ok )
452 infot = 2
453 CALL zhetf2_rk( 'U', -1, a, 1, e, ip, info )
454 CALL chkxer( 'ZHETF2_RK', infot, nout, lerr, ok )
455 infot = 4
456 CALL zhetf2_rk( 'U', 2, a, 1, e, ip, info )
457 CALL chkxer( 'ZHETF2_RK', infot, nout, lerr, ok )
458*
459* ZHETRI_3
460*
461 srnamt = 'ZHETRI_3'
462 infot = 1
463 CALL zhetri_3( '/', 0, a, 1, e, ip, w, 1, info )
464 CALL chkxer( 'ZHETRI_3', infot, nout, lerr, ok )
465 infot = 2
466 CALL zhetri_3( 'U', -1, a, 1, e, ip, w, 1, info )
467 CALL chkxer( 'ZHETRI_3', infot, nout, lerr, ok )
468 infot = 4
469 CALL zhetri_3( 'U', 2, a, 1, e, ip, w, 1, info )
470 CALL chkxer( 'ZHETRI_3', infot, nout, lerr, ok )
471 infot = 8
472 CALL zhetri_3( 'U', 0, a, 1, e, ip, w, 0, info )
473 CALL chkxer( 'ZHETRI_3', infot, nout, lerr, ok )
474 infot = 8
475 CALL zhetri_3( 'U', 0, a, 1, e, ip, w, -2, info )
476 CALL chkxer( 'ZHETRI_3', infot, nout, lerr, ok )
477*
478* ZHETRI_3X
479*
480 srnamt = 'ZHETRI_3X'
481 infot = 1
482 CALL zhetri_3x( '/', 0, a, 1, e, ip, w, 1, info )
483 CALL chkxer( 'ZHETRI_3X', infot, nout, lerr, ok )
484 infot = 2
485 CALL zhetri_3x( 'U', -1, a, 1, e, ip, w, 1, info )
486 CALL chkxer( 'ZHETRI_3X', infot, nout, lerr, ok )
487 infot = 4
488 CALL zhetri_3x( 'U', 2, a, 1, e, ip, w, 1, info )
489 CALL chkxer( 'ZHETRI_3X', infot, nout, lerr, ok )
490*
491* ZHETRS_3
492*
493 srnamt = 'ZHETRS_3'
494 infot = 1
495 CALL zhetrs_3( '/', 0, 0, a, 1, e, ip, b, 1, info )
496 CALL chkxer( 'ZHETRS_3', infot, nout, lerr, ok )
497 infot = 2
498 CALL zhetrs_3( 'U', -1, 0, a, 1, e, ip, b, 1, info )
499 CALL chkxer( 'ZHETRS_3', infot, nout, lerr, ok )
500 infot = 3
501 CALL zhetrs_3( 'U', 0, -1, a, 1, e, ip, b, 1, info )
502 CALL chkxer( 'ZHETRS_3', infot, nout, lerr, ok )
503 infot = 5
504 CALL zhetrs_3( 'U', 2, 1, a, 1, e, ip, b, 2, info )
505 CALL chkxer( 'ZHETRS_3', infot, nout, lerr, ok )
506 infot = 9
507 CALL zhetrs_3( 'U', 2, 1, a, 2, e, ip, b, 1, info )
508 CALL chkxer( 'ZHETRS_3', infot, nout, lerr, ok )
509*
510* ZHECON_3
511*
512 srnamt = 'ZHECON_3'
513 infot = 1
514 CALL zhecon_3( '/', 0, a, 1, e, ip, anrm, rcond, w, info )
515 CALL chkxer( 'ZHECON_3', infot, nout, lerr, ok )
516 infot = 2
517 CALL zhecon_3( 'U', -1, a, 1, e, ip, anrm, rcond, w, info )
518 CALL chkxer( 'ZHECON_3', infot, nout, lerr, ok )
519 infot = 4
520 CALL zhecon_3( 'U', 2, a, 1, e, ip, anrm, rcond, w, info )
521 CALL chkxer( 'ZHECON_3', infot, nout, lerr, ok )
522 infot = 7
523 CALL zhecon_3( 'U', 1, a, 1, e, ip, -1.0d0, rcond, w, info)
524 CALL chkxer( 'ZHECON_3', infot, nout, lerr, ok )
525*
526 ELSE IF( lsamen( 2, c2, 'HP' ) ) THEN
527*
528* Test error exits of the routines that use factorization
529* of a Hermitian indefinite packed matrix with partial
530* (Bunch-Kaufman) diagonal pivoting method.
531*
532* ZHPTRF
533*
534 srnamt = 'ZHPTRF'
535 infot = 1
536 CALL zhptrf( '/', 0, a, ip, info )
537 CALL chkxer( 'ZHPTRF', infot, nout, lerr, ok )
538 infot = 2
539 CALL zhptrf( 'U', -1, a, ip, info )
540 CALL chkxer( 'ZHPTRF', infot, nout, lerr, ok )
541*
542* ZHPTRI
543*
544 srnamt = 'ZHPTRI'
545 infot = 1
546 CALL zhptri( '/', 0, a, ip, w, info )
547 CALL chkxer( 'ZHPTRI', infot, nout, lerr, ok )
548 infot = 2
549 CALL zhptri( 'U', -1, a, ip, w, info )
550 CALL chkxer( 'ZHPTRI', infot, nout, lerr, ok )
551*
552* ZHPTRS
553*
554 srnamt = 'ZHPTRS'
555 infot = 1
556 CALL zhptrs( '/', 0, 0, a, ip, b, 1, info )
557 CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
558 infot = 2
559 CALL zhptrs( 'U', -1, 0, a, ip, b, 1, info )
560 CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
561 infot = 3
562 CALL zhptrs( 'U', 0, -1, a, ip, b, 1, info )
563 CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
564 infot = 7
565 CALL zhptrs( 'U', 2, 1, a, ip, b, 1, info )
566 CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
567*
568* ZHPRFS
569*
570 srnamt = 'ZHPRFS'
571 infot = 1
572 CALL zhprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
573 $ info )
574 CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
575 infot = 2
576 CALL zhprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
577 $ info )
578 CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
579 infot = 3
580 CALL zhprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
581 $ info )
582 CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
583 infot = 8
584 CALL zhprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
585 $ info )
586 CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
587 infot = 10
588 CALL zhprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
589 $ info )
590 CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
591*
592* ZHPCON
593*
594 srnamt = 'ZHPCON'
595 infot = 1
596 CALL zhpcon( '/', 0, a, ip, anrm, rcond, w, info )
597 CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
598 infot = 2
599 CALL zhpcon( 'U', -1, a, ip, anrm, rcond, w, info )
600 CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
601 infot = 5
602 CALL zhpcon( 'U', 1, a, ip, -anrm, rcond, w, info )
603 CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
604 END IF
605*
606* Print a summary line.
607*
608 CALL alaesm( path, ok, nout )
609*
610 RETURN
611*
612* End of ZERRHEX
613*
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
subroutine zhecon_3(uplo, n, a, lda, e, ipiv, anorm, rcond, work, info)
ZHECON_3
Definition zhecon_3.f:166
subroutine zhecon_rook(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
ZHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obt...
subroutine zhecon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
ZHECON
Definition zhecon.f:125
subroutine zherfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZHERFS
Definition zherfs.f:192
subroutine zherfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZHERFSX
Definition zherfsx.f:401
subroutine zhetf2_rk(uplo, n, a, lda, e, ipiv, info)
ZHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition zhetf2_rk.f:241
subroutine zhetf2_rook(uplo, n, a, lda, ipiv, info)
ZHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
subroutine zhetf2(uplo, n, a, lda, ipiv, info)
ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (...
Definition zhetf2.f:191
subroutine zhetrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
ZHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition zhetrf_rk.f:259
subroutine zhetrf_rook(uplo, n, a, lda, ipiv, work, lwork, info)
ZHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
subroutine zhetrf(uplo, n, a, lda, ipiv, work, lwork, info)
ZHETRF
Definition zhetrf.f:177
subroutine zhetri2(uplo, n, a, lda, ipiv, work, lwork, info)
ZHETRI2
Definition zhetri2.f:127
subroutine zhetri2x(uplo, n, a, lda, ipiv, work, nb, info)
ZHETRI2X
Definition zhetri2x.f:120
subroutine zhetri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
ZHETRI_3
Definition zhetri_3.f:170
subroutine zhetri_3x(uplo, n, a, lda, e, ipiv, work, nb, info)
ZHETRI_3X
Definition zhetri_3x.f:159
subroutine zhetri_rook(uplo, n, a, lda, ipiv, work, info)
ZHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch...
subroutine zhetri(uplo, n, a, lda, ipiv, work, info)
ZHETRI
Definition zhetri.f:114
subroutine zhetrs_3(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info)
ZHETRS_3
Definition zhetrs_3.f:165
subroutine zhetrs_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using fac...
subroutine zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS
Definition zhetrs.f:120
subroutine zhpcon(uplo, n, ap, ipiv, anorm, rcond, work, info)
ZHPCON
Definition zhpcon.f:118
subroutine zhprfs(uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZHPRFS
Definition zhprfs.f:180
subroutine zhptrf(uplo, n, ap, ipiv, info)
ZHPTRF
Definition zhptrf.f:159
subroutine zhptri(uplo, n, ap, ipiv, work, info)
ZHPTRI
Definition zhptri.f:109
subroutine zhptrs(uplo, n, nrhs, ap, ipiv, b, ldb, info)
ZHPTRS
Definition zhptrs.f:115
logical function lsamen(n, ca, cb)
LSAMEN
Definition lsamen.f:74
Here is the call graph for this function: