LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zhetri2.f
Go to the documentation of this file.
1*> \brief \b ZHETRI2
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZHETRI2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetri2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetri2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetri2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
20*
21* .. Scalar Arguments ..
22* CHARACTER UPLO
23* INTEGER INFO, LDA, LWORK, N
24* ..
25* .. Array Arguments ..
26* INTEGER IPIV( * )
27* COMPLEX*16 A( LDA, * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> ZHETRI2 computes the inverse of a COMPLEX*16 hermitian indefinite matrix
37*> A using the factorization A = U*D*U**T or A = L*D*L**T computed by
38*> ZHETRF. ZHETRI2 set the LEADING DIMENSION of the workspace
39*> before calling ZHETRI2X that actually computes the inverse.
40*> \endverbatim
41*
42* Arguments:
43* ==========
44*
45*> \param[in] UPLO
46*> \verbatim
47*> UPLO is CHARACTER*1
48*> Specifies whether the details of the factorization are stored
49*> as an upper or lower triangular matrix.
50*> = 'U': Upper triangular, form is A = U*D*U**T;
51*> = 'L': Lower triangular, form is A = L*D*L**T.
52*> \endverbatim
53*>
54*> \param[in] N
55*> \verbatim
56*> N is INTEGER
57*> The order of the matrix A. N >= 0.
58*> \endverbatim
59*>
60*> \param[in,out] A
61*> \verbatim
62*> A is COMPLEX*16 array, dimension (LDA,N)
63*> On entry, the block diagonal matrix D and the multipliers
64*> used to obtain the factor U or L as computed by ZHETRF.
65*>
66*> On exit, if INFO = 0, the (symmetric) inverse of the original
67*> matrix. If UPLO = 'U', the upper triangular part of the
68*> inverse is formed and the part of A below the diagonal is not
69*> referenced; if UPLO = 'L' the lower triangular part of the
70*> inverse is formed and the part of A above the diagonal is
71*> not referenced.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER
77*> The leading dimension of the array A. LDA >= max(1,N).
78*> \endverbatim
79*>
80*> \param[in] IPIV
81*> \verbatim
82*> IPIV is INTEGER array, dimension (N)
83*> Details of the interchanges and the block structure of D
84*> as determined by ZHETRF.
85*> \endverbatim
86*>
87*> \param[out] WORK
88*> \verbatim
89*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
90*> \endverbatim
91*>
92*> \param[in] LWORK
93*> \verbatim
94*> LWORK is INTEGER
95*> The dimension of the array WORK.
96*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3).
97*> If LWORK = -1, then a workspace query is assumed; the routine
98*> calculates:
99*> - the optimal size of the WORK array, returns
100*> this value as the first entry of the WORK array,
101*> - and no error message related to LWORK is issued by XERBLA.
102*> \endverbatim
103*>
104*> \param[out] INFO
105*> \verbatim
106*> INFO is INTEGER
107*> = 0: successful exit
108*> < 0: if INFO = -i, the i-th argument had an illegal value
109*> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
110*> inverse could not be computed.
111*> \endverbatim
112*
113* Authors:
114* ========
115*
116*> \author Univ. of Tennessee
117*> \author Univ. of California Berkeley
118*> \author Univ. of Colorado Denver
119*> \author NAG Ltd.
120*
121*> \ingroup hetri2
122*
123* =====================================================================
124 SUBROUTINE zhetri2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
125*
126* -- LAPACK computational routine --
127* -- LAPACK is a software package provided by Univ. of Tennessee, --
128* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
129*
130* .. Scalar Arguments ..
131 CHARACTER UPLO
132 INTEGER INFO, LDA, LWORK, N
133* ..
134* .. Array Arguments ..
135 INTEGER IPIV( * )
136 COMPLEX*16 A( LDA, * ), WORK( * )
137* ..
138*
139* =====================================================================
140*
141* .. Local Scalars ..
142 LOGICAL UPPER, LQUERY
143 INTEGER MINSIZE, NBMAX
144* ..
145* .. External Functions ..
146 LOGICAL LSAME
147 INTEGER ILAENV
148 EXTERNAL lsame, ilaenv
149* ..
150* .. External Subroutines ..
151 EXTERNAL zhetri2x, zhetri, xerbla
152* ..
153* .. Executable Statements ..
154*
155* Test the input parameters.
156*
157 info = 0
158 upper = lsame( uplo, 'U' )
159 lquery = ( lwork.EQ.-1 )
160*
161* Get blocksize
162*
163 nbmax = ilaenv( 1, 'ZHETRF', uplo, n, -1, -1, -1 )
164 IF( n.EQ.0 ) THEN
165 minsize = 1
166 ELSE IF( nbmax.GE.n ) THEN
167 minsize = n
168 ELSE
169 minsize = (n+nbmax+1)*(nbmax+3)
170 END IF
171*
172 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
173 info = -1
174 ELSE IF( n.LT.0 ) THEN
175 info = -2
176 ELSE IF( lda.LT.max( 1, n ) ) THEN
177 info = -4
178 ELSE IF( lwork.LT.minsize .AND. .NOT.lquery ) THEN
179 info = -7
180 END IF
181*
182 IF( info.NE.0 ) THEN
183 CALL xerbla( 'ZHETRI2', -info )
184 RETURN
185 ELSE IF( lquery ) THEN
186 work( 1 ) = minsize
187 RETURN
188 END IF
189*
190* Quick return if possible
191*
192 IF( n.EQ.0 )
193 $ RETURN
194
195 IF( nbmax.GE.n ) THEN
196 CALL zhetri( uplo, n, a, lda, ipiv, work, info )
197 ELSE
198 CALL zhetri2x( uplo, n, a, lda, ipiv, work, nbmax, info )
199 END IF
200*
201 RETURN
202*
203* End of ZHETRI2
204*
205 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhetri2(uplo, n, a, lda, ipiv, work, lwork, info)
ZHETRI2
Definition zhetri2.f:125
subroutine zhetri2x(uplo, n, a, lda, ipiv, work, nb, info)
ZHETRI2X
Definition zhetri2x.f:118
subroutine zhetri(uplo, n, a, lda, ipiv, work, info)
ZHETRI
Definition zhetri.f:112