LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zhetrs_3 | ( | character | uplo, |
integer | n, | ||
integer | nrhs, | ||
complex*16, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex*16, dimension( * ) | e, | ||
integer, dimension( * ) | ipiv, | ||
complex*16, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
integer | info ) |
ZHETRS_3
Download ZHETRS_3 + dependencies [TGZ] [ZIP] [TXT]
!> ZHETRS_3 solves a system of linear equations A * X = B with a complex !> Hermitian matrix A using the factorization computed !> by ZHETRF_RK or ZHETRF_BK: !> !> A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), !> !> where U (or L) is unit upper (or lower) triangular matrix, !> U**H (or L**H) is the conjugate of U (or L), P is a permutation !> matrix, P**T is the transpose of P, and D is Hermitian and block !> diagonal with 1-by-1 and 2-by-2 diagonal blocks. !> !> This algorithm is using Level 3 BLAS. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the details of the factorization are !> stored as an upper or lower triangular matrix: !> = 'U': Upper triangular, form is A = P*U*D*(U**H)*(P**T); !> = 'L': Lower triangular, form is A = P*L*D*(L**H)*(P**T). !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | NRHS | !> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (LDA,N) !> Diagonal of the block diagonal matrix D and factors U or L !> as computed by ZHETRF_RK and ZHETRF_BK: !> a) ONLY diagonal elements of the Hermitian block diagonal !> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); !> (superdiagonal (or subdiagonal) elements of D !> should be provided on entry in array E), and !> b) If UPLO = 'U': factor U in the superdiagonal part of A. !> If UPLO = 'L': factor L in the subdiagonal part of A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[in] | E | !> E is COMPLEX*16 array, dimension (N) !> On entry, contains the superdiagonal (or subdiagonal) !> elements of the Hermitian block diagonal matrix D !> with 1-by-1 or 2-by-2 diagonal blocks, where !> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced; !> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced. !> !> NOTE: For 1-by-1 diagonal block D(k), where !> 1 <= k <= N, the element E(k) is not referenced in both !> UPLO = 'U' or UPLO = 'L' cases. !> |
[in] | IPIV | !> IPIV is INTEGER array, dimension (N) !> Details of the interchanges and the block structure of D !> as determined by ZHETRF_RK or ZHETRF_BK. !> |
[in,out] | B | !> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, the solution matrix X. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> June 2017, Igor Kozachenko, !> Computer Science Division, !> University of California, Berkeley !> !> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, !> School of Mathematics, !> University of Manchester !> !>
Definition at line 161 of file zhetrs_3.f.